控制理论(状态空间表达式)
- 格式:ppt
- 大小:1.65 MB
- 文档页数:159
第二章 控制系统的状态空间表达式2-1 状态、状态变量、状态空间、状态方程、动态方程任何一个系统在特定时刻都有一个特定的状态,每个状态都可以用最小的一组(一个或多个)独立的状态变量来描述。
设系统有n 个状态变量n x x x ,,21,它们都是时间t 的函数,控制系统的每一个状态都可以在一个由n x x x ,,21为轴的n 维状态空间上的一点来表示,用向量形式表示就是:()()()()[]T=t x t x t x t x n 21()t x 称作系统的状态向(矢)量。
设系统的控制输入为:r u u u ,,,21 ,它们也是时间t 的函数。
记:()()()()[]T=t u t u t u t u r 21那么表示系统状态变量x(t)随系统输入u(t)以及时间t 变化的规律的方程就是控制系统的状态方程:()()()[]t t u t x f t x,,= 其中()()()[]T=t f t f t f f n 21 是一个函数矢量。
设系统的输出变量为m y y y ,,,21 ,则()Tm y y y y ,,,21 =称为系统的输出向量。
表示输出变量y(t)与系统状态变量x(t)、系统输入u(t)以及时间t 的关系的方程就称作系统的输出方程:()()()[]t t u t x g t y ,,=其中()Tm g g g g ,,,21 = 是一个函数矢量。
在现代控制理论中,用系统的状态方程和输出方程来描述系统的动态行为,状态方程和输出方程合起来称作系统的状态空间表达式或称动态方程。
根据函数向量F 和G 的不同情况,一般控制系统可以分为如下四种:∙ 线性定常(时不变)系统(LTI-Linear Time-Invariant); ∙ 线性不定常(时变)系统(Linear Time-Variant); ∙ 非线性定常系统(Nonlinear Time-Invariant); ∙非线性时变系统(Nonlinear Time-Variant)。
1.状态空间表达式n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯:r n B ⨯:n m C ⨯:rm D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3.模拟结构图(积分器加法器比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4.状态空间表达式的建立1由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
2由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。
实现是非唯一的。
方法:微分方程→系统函数→模拟结构图→状态空间表达式。
现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。
以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。
随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。
2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。
3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。
即无零,极点对消的传函的实现。
三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。
控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。
将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。
传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。
《现代控制理论》MOOC课程第一章控制系统的状态空间表达式第一章控制系统的状态空间表达式状态空间变量及状态空间表达式状态空间表达式的建立状态向量的线性变换从状态空间表达式求传递函数组合系统的状态空间表达式离散系统、时变系统和非线性系统的状态空间表达式经典控制理论:数学模型:传递函数)()()(s U s Y s G =uy∑G(s)传递函数的定义线性定常系统的传递函数是指在初始状态为零的条件下,系统输出变量的拉氏变换与输入变量的拉氏变换之比。
G(s)=Y(s)U(s)经典控制理论:数学模型:传递函数)()()(s U s Y s G =uy∑G(s)现代控制理论:Xuy∑数学模型:状态空间表达式《现代控制理论》MOOC课程1.1 状态空间变量及状态空间表达式一. 状态变量足以完全表征系统运动状态的最少个数的一组变量,称为状态变量。
完全表征) (t u1R1L2R2LC)(1ti)(2ti-)(tu c+)(),(),(210ctutiti)(tu已知:确定系统在任何t≥t0时间的动态行为。
只要给定状态变量的初值x(t0)以及t≥t0时刻的输入u(t),就能够完全一. 状态变量最小性而增加变量的个数则是完全表征系统动态行为所不需要的。
) (t u1R1L2R2LC)(1ti)(2ti-)(tu c+)(c tidttduti c)(C)(c=体现在减少变量个数就不能够完全表征系统的动态行为,)(),(),(21tutiti c关于状态变量的几点说明状态变量是相互独立的。
对于一个实际的物理系统,状态变量个数等于系统中独立储能元件的个数。
不能多,也不能少。
对同一个动态系统,状态变量的选取不是唯一的,但状态变量的个数是唯一确定的,) (t u1R1L2R2LC)(1ti)(2ti-)(tu c+)(),(),(21tutiti c状态变量1:)(),(),(21tititi c状态变量2:二. 状态向量由系统状态变量构成的向量,称为系统的状态向量。