第二章_状态空间表达式的解
- 格式:ppt
- 大小:261.50 KB
- 文档页数:35
2-5 系统状态方程的线性变换2-5-1 系统状态空间表达式的非唯一性系统动态方程建立,无论是从实际物理系统出发,还是从系统方块图出发,还是从系统微分方程或传递函数出发,在状态变量的选取方面都带有很大的人为的随意性,因而求得的系统的状态方程也有很大的人为因素,很大的随意性,因此会得出不同的系统状态方程。
实际物理系统虽然结构不可能变化,但不同的状态变量取法就产生不同的动态方程;系统方块图在取状态变量之前需要进行等效变换,而等效变换过程就有很大程度上的随意性,因此会产生一定程度上的结构差异,这也会导致动态方程差异的产生;从系统微分方程或传递函数出发的系统实现问题,更是会导致迥然不同的系统内部结构的产生,因而也肯定产生不同的动态方程。
所以说系统动态方程是非唯一的。
虽然同一实际物理系统,或者同一方块图,或同一传递函数所产生的动态方程各种各样,其独立的状态变量的个数是相同的,而且各种不同动态方程间也是有一定联系的,这种联系就是变量间的线性变换关系。
设给定的系统为:作线性变换:Tz x = 即x T z 1-=T --为非奇异矩阵(变换矩阵)则:Bu T ATz T z11--+= , ()()01100x T x T z --== 因为T 为任意非奇异矩阵,所以状态空间表达式为非唯一的。
2-5-2系统特征值的不变性及系统的不变量 1. 系统特征值 特征方程:0=-A I λ系统特征值即为特征方程的根。
2. 系统的不变量与特征值的不变性 系统经非奇异变换后,其特征值是不变的。
证明:系统经非奇异变换后,得 其特征方程为:()AI A I T T T A I TTA I T AT T T T AT T T T AT T I -=-=-=-=-=-=---------λλλλλλλ11111111所以,特征值是不变的。
因为 00111=++++=---a a a A I n n n λλλλ所以,1210,,,--n n a a a a 是不变的,为系统的不变量。
现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
② 由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
第二章 状态空间表达式的解3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。
(1) ⎥⎦⎤⎢⎣⎡-=2010A (2) ⎥⎦⎤⎢⎣⎡-=0410A (3) ⎥⎦⎤⎢⎣⎡--=2110A (4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=452100010A (5)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000100001000010A (6)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλ000100010000A 【解】:(1) (2) (3) (4)特征值为:2,1321===λλλ。
由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=421211101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1211321201P线性变换后的系统矩阵为:(5)为结构四重根的约旦标准型。
(6)虽然特征值相同,但对应着两个约当块。
或}0100010000{])[()(1111----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。
【解】:(1) (2)特征方程为: 特征值为:2,1321===λλλ。
由于112==n n ,所以1λ对应的广义特征向量的阶数为1。
求满足0)(11=-P A I λ的解1P ,得:0110000000312111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得:对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==110010001321P P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1100100011P 线性变换后的系统矩阵为:(3)特征值为:2,1321===λλλ。
第2章 状态空间表达式的解第1节 线性定常齐次状态方程的解线性定常齐次状态方程0(0)x Ax x x ==& 的解为0()Atx t e x = (0)t >式中,22()2!!kAt k t At e I At A k ∞∆==+++=∑L 证明:用拉普拉斯变换法。
对 x A x =& 作拉氏变换,得0()()sX s x AX s -=10()()X s sI A x -=-110()[()]x t L sI A x --=-因为 223111()()sI A I A A I s s s -+++=L故 1223111()sI A I A A s s s --=+++L12023111()[]x t L I A A x s s s -=+++L 2201()2!I At A t x =+++L 0Ate x =顺便可知])[(11---=A sI L eAt第2节 矩阵指数函数Ate1、Ate 的定义和性质(1)定义22()2!!kAtk t At e I At A k ∞==+++=∑L 式中 A —线性定常系统系统矩阵,n n ⨯阶;Ate —矩阵指数函数,n n ⨯阶时变矩阵。
若A 中各元素均小于某定值,Ate 必收敛;若A 为实矩阵,Ate 绝对收敛。
(2)基本性质:◆组合性质:)(2121t t A At At ee e += 其中21,t t 为相衔接的两时间段。
推论1:I eeee A t t A t A At ===--0)()(推论2:)(1][t A At ee --=◆微分性质:A e Ae e tAt At At ==d d ◆当A 、B 两阵可交换,即 BA AB =,则tB A BtAt ee e )(+=◆若1-P 存在,则P e P eAAPP 11-=-2、Ate 的计算 (1)级数计算法()!kAtk At e k ∞==∑ (2)拉氏变换法])[(11---=A sI L eAt当A 阵维数较高时,预解矩阵可采用递推法计算。
第二章 控制系统状态空间表达式的解建立了控制系统状态空间表达式之后,就是讨论求解的问题,本章重点讨论状态转移矩阵的定义,性质和计算方法,从而导出状态方程的求解公式并讨论连续时间系统状态方程的离散化的问题。
§2-1线性定常齐次状态方程的解(自由解)所谓自由解是指系统输入为零时,由初始状态引起的自由运动。
状态方程为齐次矩阵微分方程:AX X= (2-1)若初始时刻0t 时的状态给定为00)(x t x =,则式(2-1)有唯一确定解。
0)(0)(x e t x t t A -=,0t t ≥(2-2)若初始时刻从0=t 开始,即0)0(x x =,则其解为:0)(x e t x At =, 0t t ≥(2-3)证:先假设式(2-1)的解)(t x 为t 的矢量幂级数形式,即:+++++=k k t b t b t b b t x 2210)((2-4)对上式求导: ++++=-1232132)(k k t kb t b t b b t x代人式(2-1)得:A x= ( +++++kk t b t b t b b 2210) (2-5)既然式(2-4)是(2-1)的解,则式(2-5)对任意时刻t 都成立,故t 的同次幂项的系数应相等,有:01Ab b =,0212!2121b A Ab b ==,0323!3131b A Ab b ==,… 01!11b A k Ab kb k k k ==-,… 在式(2-4)中,令0=t ,可得:00)0(x x b == 将以上结果代人式(2-4),故得:022)!1!211()(x t A k t A At t x k k +++++= (2-6)括号内的展开式是n n ⨯矩阵,它是一个矩阵指数函数,记为At e221112!!At k ke At A t A t K =+++++ (2-7)式(2-6)可表示为:0()At x t e x =再用)(0t t -代替)0(-t ,即在代替t 的情况下,同样证明0)(0)(x e t x t t A -=的正确性。