北京市门头沟区2015-2016学年八年级数学下学期期末考试试题 京改版
- 格式:doc
- 大小:334.50 KB
- 文档页数:16
北京市门头沟2016-2017学年八年级下学期期末考试数学试题一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的. 1.点A 的坐标是(-1,-3),则点A 在A .第一象限B .第二象限C .第三象限D .第四象限2.已知23(0)a b ab =≠,则下列比例式成立的是A .32a b = B .32a b = C .23a b = D .32b a = 3.若一个多边形的内角和等于外角和,则这个多边形的边数是A .7B .6C .5D .44.一次函数35y x =-+图象上有两点A 12()3y ,、B 2(2)y ,, 则1y 与2y 的大小关系是A .B .C .D .5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,且DE ∥BC ,若:3:2AD DB =,6AE =,则EC 等于A . 10B . 4C . 15D . 96.汽车是人们出行的一种重要的交通工具。
下列汽车标志中,既是轴对称图形又是中心对称图形的是A .B .C .D .7.直线y =2x 经过A .第二、四象限B .第一、二象限C .第三、四象限D .第一、三象限. 8.2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运 会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队 员进行了五次测试,测试成绩如图所示:则下列说法中正确的是A .2A s >2B s ,应该选取B 选手参加比赛; B .2A s <2B s ,应该选取A 选手参加比赛;C .2A s ≥2B s ,应该选取B 选手参加比赛;D .2A s ≤2B s ,应该选取A 选手参加比赛.21y y =21y y >21y y ≤21y y <9.在菱形ABCD 中,对角线AC 、BD 相交于点O ,AC =8, BD =6,则菱形ABCD 的周长是A .20B . 40C .24D . 4810.自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s (千米)与时间t (小时)的函数关系,下列说法中正确的是A .汽车在0~1小时的速度是60千米/时;B .汽车在2~3小时的速度比0~0.5小时的速度快;C .汽车从0.5小时到1.5小时的速度是80千米/时;D .汽车行驶的平均速度为60千米/时.二、填空题(本题共18分,每小题3分) 11.在函数y =x 的取值范围是 .12.若53a b =,则a b b-的值是 . 13.点P (1,2)关于x 轴对称的点的坐标是 .14.如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =2, ∠AOB =60º,则BD 的长为 . 15中,对角线AC ,BD 相交于点O ,若再增加一个条件,就可得出是菱形,则你添加的条件是.16.如图,在平面直角坐标系xOy 中,四边形OABC是平行四边形,且A (4,0)、B (6,2)、M (4,3).在平面内有一条过点M 的直线将平行四边形OABC 的面积分成相等的两部分,请写出该直线的函数表达式 .三、解答题(本题共27分,第17~19题,每小题5分,第20、21每小题6分) 17.已知:如图,在△ABC 中,∠C =90º,D 是BC 上一点, DE ⊥AB 于E ,若AC =6,AB=10,DE =2.(1)求证:△BED ∽△BCA ; (2)求BD 的长.OBADCxy123456–12123–1MCB OA t s (千米)(小时)32150110300.52.51.51DCBAO18.如图,在正方形ABCD 中,点E ,F 在对角线BD 上,若再添加一个条件,就可证出AE =CF .(1)你添加的条件是 .(2)请你根据题目中的条件和你添加的条件证明AE =CF .19.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离s (km )与甲车行驶的时间t (h )之间的函数关系如图所示. (1)请分别求出甲、乙两车离开A 城的距离s (km )与甲车行驶的时间t (h )之间的函数表达式;50千米.(2)当甲乙两车都在行驶过程中.......时,甲车出发多长时间,两车相距20.如图,在平面直角坐标系xOy 中,一次函数+y x n =-例函数2y x =的图象交于点A (m ,4). (1)求m 、n 的值;(2)设一次函数+y x n =-的图象与x 轴交于点B (3)直接写出使函数+y x n =-的值小于函数2y x =值范围.21.如图,在ABCD 中,AC ⊥BC ,过点D 作DE ∥AC 交AE 交CD 于点F .(1)求证:四边形ADEC 是矩形; (2中,取AB 的中点M ,连接CM ,若BCADEFt(h)s(km)乙甲300541OADEC 的面积.四、解答题(本题共25分,第22题5分,第23、24每小题6分,第25题8分)22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A (1,2),B (7,2),C (5,6). ∽△ABC ,(1)请以图中的格点..为顶点...画出一个△A 1B 1C ,使得△A 1B 1C 且△A 1B 1C 与△ABC 的周长比为1:2;(每个小正方形的顶点为格点)(2)根据你所画的图形,直接写出顶点A 1和B 1的坐标.23.2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家讨论的重点内容之一.2017年6月5日是世界环境日,为纪念第46个世界环境日,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了50名学生的成绩(成绩取正整数,满分为100分)进行统计分析,经分组整理后绘制成频数分布表和频数分布直方图.频数分布表 频数分布直方图(1)请你根据图表提供的信息,解答下列问题:a = ,b = ,c = ; (2)请补全频数分布直方图;(3)若成绩在90分以上(含90分)为优秀,则该校成绩优秀的约为 人. 24. 在一节数学课上,老师出示了这样一个问题让学生探究:已知:如图在△ABC中,点D是BA 边延长线上一动点,点F 在BC 上,且12CF BF =,连接DF 交AC 于点E . (1)如图1,当点E 恰为DF 的中点时,请求出ADAB的值; (2)如图2,当(0)DE a a EF =>时,请求出ADAB的值(用含a 的代数式表示).思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG∥AB 交AC 于点G ,构造相似三角形解决问题; 乙:过点F 作FG∥AC 交AB 于点G ,构造相似三角形解决问题; 丙:过点D 作DG∥BC 交CA 延长线于点G ,构造相似三角形解决问题; 老师说:“这三位同学的想法都可以” .图1图2请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问ADAB的值.25.在平面直角坐标系xOy 中,点C 坐标为(6,0),以原点O 为顶点的四边形OABC 是平行四边形,将边OA 沿x轴翻折得到线段OA ',连接A B '交线段OC 于点D . (1)如图1,当点A 在y 轴上,且A (0,-2)时. ① 求A B '所在直线的函数表达式; ② 求证:点D 为线段A B '的中点.EBACDFECABD F︒时,OA',BC的延长线相交于点M,试探究ODBM的值,并写出探究思路.门头沟区2016—2017学年度第二学期期末调研试卷八年级数学答案及评分参考二、填空题(本题共24分,每小题3分)xy yAJ = 2.0厘∠°∠°显示句柄显示对象显示迭代象显示点MDA'A'AOBCxAJ' = 2.02厘米∠°∠°三、解答题(本题共27分,第17~19题,每小题5分,第20、21每小题6分) 17.解:(1)∵ DE ⊥AB 于E ,∴∠DEB =90º.又∵∠C =90º,∴∠D E B =∠C . (1)分 又∵∠B =∠B , (2)分∴△B E D ∽△B C A . ……………………………………………………3分(2)∵△BED ∽△BCA ,∴DE BDAC AB=.……………………………………………………4分∴2610BD=, ∴B D =103.……………………………………………………………………5分18.解:(1)答案不唯一,条件正确………………………………………………………1分 (2)证明:∵四边形ABCD 是正方形,∴AB ∥CD ,AB =CD ………………………………………………2分 ∴∠ABD =∠BDC ………………………………………………3分 又∵_______________(添加)∴△ABE ≌△CDF . ………………………………………………4分 ∴AE =CF . …………………………………………………………5分19.解:(1)设甲车离开A 城的距离s 甲与甲车行驶的时间t 之间的函数表达式为1s k t =甲(1k ≠0)根据题意得:300=51k , ∴1k =60,∴甲车离开A城的距离s 甲与甲车行驶的时间t之间的函数表达式为60s t =甲.……………………………………………………………………1分设乙车离开A 城的距离s 乙与甲车行驶的时间t 之间的函数表达式为22(0)s k t b k =+≠乙,根据题意得:2204300k b k b +=⎧⎨+=⎩∴解得2100100k b =⎧⎨=-⎩∴…………………………………………………………2分∴乙车离开A 城的距离s 乙与甲车行驶的时间t 之间的函数表达式为100100s t =-乙………………………………………………………………………3分(2)由题意得:60(100100)50t t --=,(100100)6050t t --=解得:54t =,154t =,………………………………………………………………5分 20.解:(1)正比例函数2y x =的图象过点A (m ,4).∴ 4=2 m ,∴ m =2 .………………………………………………………………………1分又∵一次函数+n y x =-的图象过点A (m ,4). ∴ 4=-2+ n ,∴ n =6.………………………………………………………………………2分 (2)一次函数+n y x =-的图象与x 轴交于点B ,∴令y =0,0+6x =- ∴x =6 点B 坐标为(6,0).…………………………………………………4分 ∴△AOB 的面积164122=⨯⨯=.…………………………………………5分 (3)x >2.…………………………………………………………………………6分21.证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC .……………………………………………………………1分又∵DE ∥AC ,∴四边形ADEC 是平行四边形.………………………………………2分 又∵AC ⊥BC ,∴∠ACE =90º.∴四边形ADEC 是矩形.………………………………………………3分解:(2) ∵AC ⊥BC ,∴∠ACB =90º. ∵M 是AB 的中点,∴AB =2CM =10.…………………………………………………………4分∵AC =8,∴6BC ==. 又∵四边形ABCD 是平行四边形, ∴BC =AD .又∵四边形ADEC 是矩形, ∴EC =AD .∴EC= BC=6.……………………………………………………………5分∴矩形ADEC的面积=6848⨯=.……………………………………6分四、解答题(本题共25分,第22题5分,第23、24每小题6分,第25题8分)22.解:(1)正确画出图形:略…………………………………………………………3分(2)A1(3,4),B1(6,4)或A1(7,8),B1(4,8)或A1(3,8),B1(3,5)或A1(7,4),B1(7,7).…………………………………………………5分23.解:(1)8,12,0.24;………………………………………………………………3分(2)补全图形;……………………………………………………………………5分(3)216 .………………………………………………………………………6分24.解:(1)甲同学的想法:过点F作FG∥AB交AC于点G.∴∠GFE=∠ADE,∠FGE=∠DAE∴△AED∽△GEF.∴AD EDGF EF=.………………………1分∵E为DF的中点,∴ED=EF.∴AD=GF.………………………2分∵FG∥AB,∴△CGF∽△CAB.∴GF CFAB CB=.………………………3分∵12 CFBF=,∴13CFCB=.………………………………………………………4分∴13AD GF CFAB AB CB===.………………………………………5分乙同学的想法:过点F作FG∥AC交AB于点G.∴AD EDAG EF=.………………………1分∵E为DF的中点,∴ED=EF.∴AD=AG.………………………2分∵FG∥AC,∴AG CFAB CB=.………………………3分∵12CF BF =, ∴13CF CB = .………………………………………………………4分 ∴13AD AG CF AB AB CB === .………………………………………5分 丙同学的想法:过点D 作DG ∥BC 交CA 延长线于点G . ∴∠C =∠G ,∠CFE =∠GDE ∴△GDE ∽△CFE . ∴GD EDCF EF=.………………………1分 ∵E 为DF 的中点,∴ED =EF .∴DG =FC .………………………2分 ∵DG ∥BC ,∴∠C =∠G ,∠B =∠ADG ∴△ADG ∽△ABC .∴AD DGAB BC=.………………………3分 ∵12CF BF =, ∴13CF BC = .………………………………………………………4分 ∴13AD DG CF AB BC BC === .………………………………………5分 (2)3AD a AB =.……………………………………………………………6分25. 解:(1)①四边形OABC 是平行四边形 ∴AO ∥BC ,AO =BC . 又∵点A 落在y 轴上, ∴AO ⊥x 轴, ∴BC ⊥x 轴.∵A (0,-2)C (6,0), ∴B (6,-2).……………………………………………………………1分又∵边OA 沿x 轴翻折得到线段OA ',∴A '(0,2).……………………………………………………………2分设直线A B '的函数表达式为(0)y kx b k =+≠ ,2,6 2.b k b =⎧⎨+=-⎩∴ ………………………………………………………………3分解得2,2.3b k =⎧⎪⎨=-⎪⎩∴G ECABDF∴ A B '所在直线的函数表达式为223y x =-+. …………………4分 证明:②∵四边形OABC 是平行四边形,∴AO ∥BC ,AO =BC .∴∠OA B '=∠DBC .又∵边OA 沿x 轴翻折得到线段OA ',∴AO =OA '.∴OA '=BC .又∵∠A DO '=∠BDC ,∴△A DO '≌△BDC . ……………………………………………………5分∴A D '=BD ,∴点D 为线段A B '的中点. ……………………………………………6分解:(2)OD BM =7分 思路:连接AA '交x 轴于F 点 证明F 为AA '的中点; ∴ 得出点D 为线段A B '的中点 ∵边OA 沿x 轴翻折得到线段OA '且45AOC ∠=︒,∴45A OD ∠=︒', 90A OA ∠=︒'.∵AO ∥BC ,∴90M ∠=︒.过点D 作DE ∥BM 交OM 于点E , 可得12DE A D BM A B '==', 还可得到等腰直角△ODE . ∴OD DE =. ∴OD BM =8分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分,谢谢!xyF EM D A'A OB C。
北京市大兴区2015-2016学年八年级数学下学期期末考试试题考生须知1.本试卷共4页,共三道大题,29道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共10道小题,每题3分,共30分) 在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求涂在答题纸第1-10题的相应位置上.1.在平面直角坐标系中,点M (-4,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 2.我国一些银行的行标设计都融入了中国古代钱币的图案.下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是A. B. C. D.3.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是4.若一个多边形的内角和为540°,则这个多边形的边数为A .4 B. 5 C. 6 D.7 5.在下列图形性质中,平行四边形不一定具备的是A .两组对边分别相等 B.两组对边分别平行 C.对角线相等 D.对角线互相平分 6.下列关于正比例函数y = 3x 的说法中,正确的是A .当x =3时,y =1 B.它的图象是一条过原点的直线 C. y 随x 的增大而减小 D.它的图象经过第二、四象限 7.为了备战2016年里约奥运会,中国射击队正在积极训练.甲、乙两名运动员在相同的条件下,各射击10次.经过计算,甲、乙两人成绩的平均数均是9.5环,甲的成绩方差是0.125,乙的成绩的方差是0.85,那么这10次射击中,甲、乙成绩的稳定情况是A .甲较为稳定B .乙较为稳定C .两个人成绩一样稳定D .不能确定8.用两个全等的直角三角形纸板拼图,不一定能拼出的图形是A .菱形 B. 平行四边形 C. 等腰三角形 D.矩形9.已知,在平面直角坐标系xOy 中,点A ( -4,0 ),点B 在直线y = x +2上.当A ,B 两点间的距离最小时,点B 的坐标是A .(2-2- , 2- ) B.(2-2-, 2 ) C.( -3,-1 ) D.(-3,)10. 设max {m ,n }表示m ,n (m ≠ n )两个数中的最大值.例如max {-1,2}=2,max {12,8}=12,则max {2x ,x 2+2}的结果为A .222x x -- B .222x x ++C .2xD .22x +二、填空题(本题共8道小题,每题2分,共16分) 11.点P (-3,1)到y 轴的距离是______. 12.函数11y x =-中,自变量x 的取值范围是______.13.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时的绿化面积为______平方米.14.点111()P x y ,,点222()P x y ,是一次函数y = 4x +2图象上的两个点. 若12x x <,则1y ______2y (填“>”或“<”)15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是AB 的中点,连结EO .若EO =2,则CD 的长为______ .16.若m 是方程240x x +-=的根,则代数式3255m m +-的值是______ .17.写出一个同时满足下列两个条件的一元二次方程______ . (1)二次项系数是1 (2)方程的两个实数根异号18.印度数学家什迦罗(1141年-1225年)曾提出过“荷花问题”:平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边; 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅? 如图所示:荷花茎与湖面的交点为O ,点O 距荷花的底端A 的距离为0.5尺; 被强风吹一边后,荷花底端与湖面交于点B ,点B 到点O 的距离为2尺,则湖水深度OC 的长是 尺.三、解答题(本题共11道小题,第19小题4分,其余各题每小题5分,共54分) 19. 已知一次函数的图象与直线y =-3x +1平行,且经过点A (1,2),求这个一次函数的表达式.20.解方程:2410x x +-=.21.某年级进行“成语大会”模拟测试,并对测试成绩(x 分)进行了分组整理,各分数段填空:(1)这个年级共有 名学生;(2)成绩在 分数段的人数最多,占全年级总人数的比值是 ; (3)成绩在60分以上(含60分)为及格,这次测试全年级的及格率是 .22.已知关于x 的一元二次方程mx 2-(2m +1)x +(m +2)=0有两个不相等的实数根,求m 的取值范围.23.已知一次函数的图象经过点(-1, -5),且与正比例函数y= 12 x 的图象相交于点(2,a ).求这个一次函数的图象与y 轴的交点坐标.24.已知:如图,在□ABCD 中,点E ,F 分别在BC ,AD 上,且BE =FD ,求证:AE =CF .25.已知:如图,在菱形ABCD 中,∠BCD =2∠ABC ,AC =4,求菱形ABCD 的周长.26.已知:如图,矩形ABCD ,E 是AB 上一点,连接DE ,使DE =AB ,过C 作CF ⊥DE 于点F.求证:CF =CB.27.已知:如图,在正方形ABCD 中,M ,N 分别是边AD ,CD 上的点,且∠MBN =45。
2016-2017学年北京市门头沟区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)点A的坐标是(﹣1,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)已知2a=3b(ab≠0),则下列比例式成立的是()A.=B.=C.=D.=3.(3分)若一个多边形的内角和等于外角和,则这个多边形的边数是()A.7B.6C.5D.44.(3分)一次函数y=﹣3x+5图象上有两点A(,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≤y25.(3分)如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10B.4C.15D.96.(3分)汽车是人们出行的一种重要的交通工具.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(3分)直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限8.(3分)2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是()A.S A2>S B2,应该选取B选手参加比赛B.S A2<S B2,应该选取A选手参加比赛C.S A2≥S B2,应该选取B选手参加比赛D.S A2≤S B2,应该选取A选手参加比赛9.(3分)在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD 的周长是()A.20B.40C.24D.4810.(3分)自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是()A.汽车在0~1小时的速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车从0.5小时到1.5小时的速度是80千米/时D.汽车行驶的平均速度为60千米/时二、填空题(本题共18分,每小题3分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)若,则的值是.13.(3分)点P(1,2)关于x轴的对称点P1的坐标为.14.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=2,∠AOB=60°,则BD 的长为.15.(3分)如图,▱ABCD中,对角形AC,BD相交于点O,添加一个条件,能使▱ABCD 成为菱形.你添加的条件是(不再添加辅助线和字母)16.(3分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式.三、解答题(本题共27分,第17~19题,每小题5分,第20、21每小题5分)17.(5分)已知:如图,在△ABC中,∠C=90°,D是BC上一点,DE⊥AB于E,若AC =6,AB=10,DE=2.(1)求证:△BED∽△BCA;(2)求BD的长.18.(5分)如图,在正方形ABCD中,点E,F在对角线BD上,若再添加一个条件,就可证出AE=CF.(1)你添加的条件是.(2)请你根据题目中的条件和你添加的条件证明AE=CF.19.(5分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离s(km)与甲车行驶的时间t(h)之间的函数关系如图所示.(1)请分别求出甲、乙两车离开A城的距离s(km)与甲车行驶的时间t(h)之间的函数表达式;(2)当甲乙两车都在行驶过程中时,甲车出发多长时间,两车相距50千米.20.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+n的图象与正比例函数y=2x的图象交于点A(m,4).(1)求m、n的值;(2)设一次函数y=﹣x+n的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数y=﹣x+n的值小于函数y=2x的值的自变量x的取值范围.21.(6分)如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.四、解答题(本题共25分,第22题5分,第23、24每小题5分,第25题8分)22.(5分)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(1,2),B(7,2),C(5,6).(1)请以图中的格点为顶点画出一个△A1B1C,使得△A1B1C∽△ABC,且△A1B1C与△ABC的周长比为1:2;(每个小正方形的顶点为格点)(2)根据你所画的图形,直接写出顶点A1和B1的坐标.23.(6分)2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家讨论的重点内容之一.2017年6月5日是世界环境日,为纪念第46个世界环境日,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了50名学生的成绩进行统计分析,经分组整理后绘制成频数分布表和频数分布直方图.频数分布表(1)请你根据图表提供的信息,解答下列问题:a=,b=,c=;(2)请补全频数分布直方图;(3)若成绩在90分以上(含90分)为优秀,则该校成绩优秀的约为人.24.(6分)在一节数学课上,老师出示了这样一个问题让学生探究:已知:如图在△ABC中,点D是BA边延长线上一动点,点F在BC上,且=,连接DF交AC于点E.(1)如图1,当点E恰为DF的中点时,请求出的值;(2)如图2,当=a(a>0)时,请求出的值(用含a的代数式表示).思考片刻后,同学们纷纷表达自己的想法:甲:过点F作FG∥AB交AC于点G,构造相似三角形解决问题;乙:过点F作FG∥AC交AB于点G,构造相似三角形解决问题;丙:过点D作DG∥BC交CA延长线于点G,构造相似三角形解决问题;老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问的值.25.(8分)在平面直角坐标系xOy中,点C坐标为(6,0),以原点O为顶点的四边形OABC 是平行四边形,将边OA沿x轴翻折得到线段OA′,连接A′B交线段OC于点D.(1)如图1,当点A在y轴上,且A(0,﹣2)时.①求A′B所在直线的函数表达式;②求证:点D为线段A′B的中点.(2)如图2,当∠AOC=45°时,OA′,BC的延长线相交于点M,试探究的值,并写出探究思路.2016-2017学年北京市门头沟区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)点A的坐标是(﹣1,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【解答】解:点A(﹣1,﹣3)在第三象限.故选:C.2.(3分)已知2a=3b(ab≠0),则下列比例式成立的是()A.=B.=C.=D.=【考点】S1:比例的性质.【解答】解:A、由=得ab=6,故本选项错误;B、由=得2a=3b,故本选项正确;C、由=得3a=2b,故本选项错误;D、由=得3a=2b,故本选项错误.故选:B.3.(3分)若一个多边形的内角和等于外角和,则这个多边形的边数是()A.7B.6C.5D.4【考点】L3:多边形内角与外角.【解答】解:根据题意,得(n﹣2)•180=360,解得:n=4.故选:D.4.(3分)一次函数y=﹣3x+5图象上有两点A(,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≤y2【考点】F8:一次函数图象上点的坐标特征.【解答】解:在一次函数y=﹣3x+5中,∵k=﹣3<0,∴y随x的增大而减小,∵<2,∴y1>y2,故选:A.5.(3分)如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10B.4C.15D.9【考点】S4:平行线分线段成比例.【解答】解:∵DE∥BC,∴==,即=,解得,EC=4,故选:B.6.(3分)汽车是人们出行的一种重要的交通工具.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:C.7.(3分)直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限【考点】F6:正比例函数的性质.【解答】解:∵k=2>0,∴y=2x经过第一、三象限,故选:D.8.(3分)2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是()A.S A2>S B2,应该选取B选手参加比赛B.S A2<S B2,应该选取A选手参加比赛C.S A2≥S B2,应该选取B选手参加比赛D.S A2≤S B2,应该选取A选手参加比赛【考点】W7:方差.【解答】解:根据统计图可得出:S A2<S B2,则应该选取A选手参加比赛;故选:B.9.(3分)在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD的周长是()A.20B.40C.24D.48【考点】L8:菱形的性质.【解答】解:四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB==5,故菱形的周长为4×5=20.故选:A.10.(3分)自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是()A.汽车在0~1小时的速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车从0.5小时到1.5小时的速度是80千米/时D.汽车行驶的平均速度为60千米/时【考点】E6:函数的图象.【解答】解:汽车在0~0.5小时的速度是:30÷0.5=60千米/时,故A错误;汽车在2~3小时的速度为:(150﹣110)÷(3﹣2)=40千米/时,0~0.5小时的速度为:60千米/时,所以汽车在2~3小时的速度比0~0.5小时的速度慢,故B错误;汽车从0.5小时到1.5小时的速度是:(110﹣30)÷(1.5﹣0.5)=80千米/时,故C正确;汽车行驶的平均速度为:150÷3=50千米/时,故D错误;故选:C.二、填空题(本题共18分,每小题3分)11.(3分)函数y=中,自变量x的取值范围是x≥2.【考点】E4:函数自变量的取值范围.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.12.(3分)若,则的值是.【考点】S1:比例的性质.【解答】解:∵=,∴a=b,∴==.故答案为:.13.(3分)点P(1,2)关于x轴的对称点P1的坐标为(1,﹣2).【考点】P5:关于x轴、y轴对称的点的坐标.【解答】解:∵关于x轴对称的点,横坐标相同,纵坐标互为相反数∴点P(1,2)关于x轴的对称点P1的坐标为(1,﹣2).故答案为:(1,﹣2).14.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=2,∠AOB=60°,则BD 的长为4.【考点】LB:矩形的性质.【解答】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴BD=2OB=4,故答案为4.15.(3分)如图,▱ABCD中,对角形AC,BD相交于点O,添加一个条件,能使▱ABCD 成为菱形.你添加的条件是AB=BC(答案不唯一)(不再添加辅助线和字母)【考点】L5:平行四边形的性质;L9:菱形的判定.【解答】解:AB=BC或AC⊥BD等.故答案为:AB=BC或AC⊥BD等.16.(3分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式y=2x﹣5.【考点】FA:待定系数法求一次函数解析式;L5:平行四边形的性质.【解答】解:∵B(6,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(3,1),设直线MD的解析式为y=kx+b,∴∴,∴该直线的函数表达式为y=2x﹣5,故答案为:y=2x﹣5.三、解答题(本题共27分,第17~19题,每小题5分,第20、21每小题5分)17.(5分)已知:如图,在△ABC中,∠C=90°,D是BC上一点,DE⊥AB于E,若AC =6,AB=10,DE=2.(1)求证:△BED∽△BCA;(2)求BD的长.【考点】S9:相似三角形的判定与性质.【解答】解:(1)∵DE⊥AB于E,∴∠DEB=90°.又∵∠C=90°,∴∠DEB=∠C,又∵∠B=∠B,∴△BED∽△BCA.(2)∵△BED∽△BCA,∴=,∴=,∴BD=.18.(5分)如图,在正方形ABCD中,点E,F在对角线BD上,若再添加一个条件,就可证出AE=CF.(1)你添加的条件是BE=DF.(2)请你根据题目中的条件和你添加的条件证明AE=CF.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【解答】解:(1)BE=DF(答案不唯一).(2)证明:∵四边形ABCD是正方形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF,∴AE=CF.19.(5分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离s(km)与甲车行驶的时间t(h)之间的函数关系如图所示.(1)请分别求出甲、乙两车离开A城的距离s(km)与甲车行驶的时间t(h)之间的函数表达式;(2)当甲乙两车都在行驶过程中时,甲车出发多长时间,两车相距50千米.【考点】FH:一次函数的应用.【解答】解:(1)设甲对应的函数解析式为:y=kt,300=5k解得,k=60,即甲对应的函数解析式为:y=60t,设乙对应的函数解析式为y=mt+n,,解得,,即乙对应的函数解析式为y=100t﹣100,(2)由题意可得,当乙出发前甲、乙两车相距50千米,则50=60t,得t=,当乙出发后到乙到达终点的过程中,则60t﹣(100t﹣100)=±50,解得,t=1.25或t=3.75,当乙到达终点后甲、乙两车相距50千米,则300﹣50=60t,得x=,即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.20.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+n的图象与正比例函数y=2x的图象交于点A(m,4).(1)求m、n的值;(2)设一次函数y=﹣x+n的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数y=﹣x+n的值小于函数y=2x的值的自变量x的取值范围.【考点】FF:两条直线相交或平行问题.【解答】解:(1)正比例函数y=2x的图象过点A(m,4).∴4=2m,∴m=2.又∵一次函数y=﹣x+n的图象过点A(m,4).∴4=﹣2+n,∴n=6.(2)一次函数y=﹣x+n的图象与x轴交于点B,∴令y=0,0=﹣x+6∴x=6 点B坐标为(6,0).∴△AOB的面积:×6×4=12.(3)由图象可知:x>2.21.(6分)如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.【考点】L5:平行四边形的性质;LD:矩形的判定与性质.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵DE∥AC,∴四边形ADEC是平行四边形.又∵AC⊥BC,∴∠ACE=90°.∴四边形ADEC是矩形;(2)解:∵AC⊥BC,∴∠ACB=90°.∵M是AB的中点,∴AB=2CM=10.∵AC=8,∴BC==6.又∵四边形ABCD是平行四边形,∴BC=AD.又∵四边形ADEC是矩形,∴EC=AD.∴EC=BC=6.∴矩形ADEC的面积=6×8=48.四、解答题(本题共25分,第22题5分,第23、24每小题5分,第25题8分)22.(5分)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(1,2),B(7,2),C(5,6).(1)请以图中的格点为顶点画出一个△A1B1C,使得△A1B1C∽△ABC,且△A1B1C与△ABC 的周长比为1:2;(每个小正方形的顶点为格点)(2)根据你所画的图形,直接写出顶点A1和B1的坐标.【考点】SB:作图—相似变换.【解答】解:(1)如图所示:△A1B1C,△A2B2C,△A3B3C,△A4B4C;(2)如图所示:A1(7,8),B1(4,8);A2(3,8),B2(3,5);A3(3,4),B3(6,4);A4(7,4),B4(7,7).23.(6分)2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家讨论的重点内容之一.2017年6月5日是世界环境日,为纪念第46个世界环境日,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了50名学生的成绩进行统计分析,经分组整理后绘制成频数分布表和频数分布直方图.频数分布表(1)请你根据图表提供的信息,解答下列问题:a=8,b=12,c=0.24;(2)请补全频数分布直方图;(3)若成绩在90分以上(含90分)为优秀,则该校成绩优秀的约为216人.【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图.【解答】解:(1)a=50×0.16=8,b=50﹣(4+8+10+16)=12,c=12÷50=0.24,故答案为:8、12、0.24;(2)补全频数分布直方图如下:(3)该校成绩优秀的约为900×0.24=216(人),故答案为:216.24.(6分)在一节数学课上,老师出示了这样一个问题让学生探究:已知:如图在△ABC中,点D是BA边延长线上一动点,点F在BC上,且=,连接DF交AC于点E.(1)如图1,当点E恰为DF的中点时,请求出的值;(2)如图2,当=a(a>0)时,请求出的值(用含a的代数式表示).思考片刻后,同学们纷纷表达自己的想法:甲:过点F作FG∥AB交AC于点G,构造相似三角形解决问题;乙:过点F作FG∥AC交AB于点G,构造相似三角形解决问题;丙:过点D作DG∥BC交CA延长线于点G,构造相似三角形解决问题;老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问的值.【考点】S9:相似三角形的判定与性质.【解答】解:(1)甲同学的想法:过点F作FG∥AB交AC于点G.∴∠GFE=∠ADE,∠FGE=∠DAE∴△AED∽△GEF.∴.∵E为DF的中点,∴ED=EF.∴AD=GF.∵FG∥AB,∴△CGF∽△CAB.∴.∵,∴.∴.乙同学的想法:过点F作FG∥AC交AB于点G.∴.∵E为DF的中点,∴ED=EF.∴AD=AG.∵FG∥AC,∴.∵,∴.∴.丙同学的想法:过点D作DG∥BC交CA延长线于点G.∴∠C=∠G,∠CFE=∠GDE∴△GDE∽△CFE.∵E为DF的中点,∴ED=EF.∴DG=FC.∵DG∥BC,∴∠C=∠G,∠B=∠ADG∴△ADG∽△ABC.∴.∵,∴.∴.(2)如图2,过点D作DG∥BC交CA延长线于点G.∴∠C=∠G,∠CFE=∠GDE∴△GDE∽△CFE.∴.∵=a,∴ED=aEF.∴DG=aFC.∵DG∥BC,∴∠C=∠G,∠B=∠ADG∴△ADG∽△ABC.∵,∴,即BC=3CF.∴==.25.(8分)在平面直角坐标系xOy中,点C坐标为(6,0),以原点O为顶点的四边形OABC 是平行四边形,将边OA沿x轴翻折得到线段OA′,连接A′B交线段OC于点D.(1)如图1,当点A在y轴上,且A(0,﹣2)时.①求A′B所在直线的函数表达式;②求证:点D为线段A′B的中点.(2)如图2,当∠AOC=45°时,OA′,BC的延长线相交于点M,试探究的值,并写出探究思路.【考点】FI:一次函数综合题.【解答】解:(1)①四边形OABC是平行四边形∴AO∥BC,AO=BC.又∵点A落在y轴上,∴AO⊥x轴,∴BC⊥x轴.∵A(0,﹣2),C(6,0),∴B(6,﹣2).又∵边OA沿x轴翻折得到线段OA',∴A'(0,2).设直线A'B的函数表达式为y=kx+b(k≠0),解得∴∴A'B所在直线的函数表达式为y=﹣x+2.证明:②∵四边形OABC是平行四边形,∴AO∥BC,AO=BC.∴∠OA'B=∠DBC.又∵边OA沿x轴翻折得到线段OA',∴AO=OA'.∴OA'=BC.又∵∠A'DO=∠BDC,∴△A'DO≌△BDC.∴A'D=BD,∴点D为线段A'B的中点.解:(2)思路:如图,连接AA'交x轴于F点证明F为AA'的中点;∴得出点D为线段A'B的中点∵边OA沿x轴翻折得到线段OA'且∠AOC=45°,∴∠A'OD=45°,∠A'OA=90°.∵AO∥BC,∴∠M=90°.过点D作DE∥BM交OM于点E,可得=,还可得到等腰直角△ODE.∴.。
北京市门头沟2016-2017学年八年级下学期期末考试数学试题一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的. 1.点A 的坐标是(-1,-3),则点A 在A .第一象限B .第二象限C .第三象限D .第四象限2.已知23(0)a b ab =≠,则下列比例式成立的是A .32a b = B .32a b = C .23a b = D .32b a = 3.若一个多边形的内角和等于外角和,则这个多边形的边数是A .7B .6C .5D .44.一次函数35y x =-+图象上有两点A 12()3y ,、B 2(2)y ,, 则1y 与2y 的大小关系是A .B .C .D .5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,且DE ∥BC ,若:3:2AD DB =,6AE =,则EC 等于A . 10B . 4C . 15D . 96.汽车是人们出行的一种重要的交通工具。
下列汽车标志中,既是轴对称图形又是中心对称图形的是A .B .C .D .7.直线y =2x 经过A .第二、四象限B .第一、二象限C .第三、四象限D .第一、三象限. 8.2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运 会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队 员进行了五次测试,测试成绩如图所示:则下列说法中正确的是A .2A s >2B s ,应该选取B 选手参加比赛; B .2A s <2B s ,应该选取A 选手参加比赛;C .2A s ≥2B s ,应该选取B 选手参加比赛;21y y =21y y >21y y ≤21y y <D .2A s ≤2B s ,应该选取A 选手参加比赛.9.在菱形ABCD 中,对角线AC 、BD 相交于点O ,AC =8, BD =6,则菱形ABCD 的周长是A .20B . 40C .24D . 4810.自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s (千米)与时间t (小时)的函数关系,下列说法中正确的是A .汽车在0~1小时的速度是60千米/时;B .汽车在2~3小时的速度比0~0.5小时的速度快;C .汽车从0.5小时到1.5小时的速度是80千米/时;D .汽车行驶的平均速度为60千米/时.二、填空题(本题共18分,每小题3分) 11.在函数2y x =-x 的取值范围是 .12.若53a b =,则a b b-的值是 .13.点P (1,2)关于x 轴对称的点的坐标是 .14.如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =2, ∠AOB =60º,则BD 的长为 . 15中,对角线AC ,BD 相交于点O ,若再增加一个条件,是菱形,则你添加的条件是 .16.如图,在平面直角坐标系xOy 中,四边形OABCA (4,0)、B (6,2)、M (4,3).在平面内有一条过点M 四边形OABC 式 .三、解答题(本题共27分,第17~19题,每小题5分,第20、21每小题6分) 17.已知:如图,在△ABC 中,∠C =90º,D 是BC 上一点, DE ⊥AB 于E ,若AC =6,AB =10,DE =2. (1)求证:△BED ∽△BCA ; (2)求BD 的长.OBDCEt s (千米)(小时)32150110300.52.51.51DCBAOOAC18.如图,在正方形ABCD 中,点E ,F 在对角线BD 上,若再添加一个条件,就可证出AE =CF .(1)你添加的条件是.(2)请你根据题目中的条件和你添加的条件证明AE =CF .19.甲、乙两车从A 城出发匀速行驶至B 城.乙两车离开A 城的距离s (km )与甲车行驶的时间t (h )如图所示.(1)请分别求出甲、乙两车离开A 城的距离s (km )t (h )之间的函数表达式;(2)当甲乙两车都在行驶过程中.......时,甲车出发多长时间,两车相距50千米.20.如图,在平面直角坐标系xOy 中,一次函数+y x n =-与正比例函数2y x =的图象交于点A (m ,4). (1)求m 、n 的值;(2)设一次函数+y x n =-的图象与x 轴交于点B 面积;(3)直接写出使函数+y x n =-的值小于函数2y x =量x 的取值范围.BCADEF21中,AC ⊥BC ,过点D 作DE ∥AC 交BC 的延长线于点E ,连接AE 交CD 于点F .(1)求证:四边形ADEC 是矩形; (2中,取AB 的中点M ,连接CM ,若CM =5,且AC =8,求四边形ADEC 的面积.四、解答题(本题共25分,第22题5分,第23、24每小题6分,第25题8分)22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A (1,2),B (7,2),C (5,6).(1)请以图中的格点..为顶点...画出一个△A 1B 1C ,使得△A 1B 1C ∽△ABC ,且△A 1B 1C 与△ABC 的周长比为1:2;(每个小正方形的顶点为格点)(2)根据你所画的图形,直接写出顶点A 1和B 1的坐标.23.2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家讨论的重点内容之一.2017年6月5日是世界环境日,为纪念第46个世界环境日,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了50名学生的成绩(成绩取正整数,满分为100分)进行统计分析,经分组整理后绘制成频数分布表和频数分布直方图.频数分布表 频数分布直方图(1)请你根据图表提供的信息,解答下列问题:a = ,b = ,c = ; (2)请补全频数分布直方图;(3)若成绩在90分以上(含90分)为优秀,则该校成绩优秀的约为 人. 24. 在一节数学课上,老师出示了这样一个问题让学生探究:已知:如图在△ABC 中,点D 是BA 边延长线上一动点,点F 在BC 上,且12CF BF ,连接DF 交AC 于点E .(1)如图1,当点E 恰为DF 的中点时,请求出ADAB的值; (2)如图2,当(0)DE a a EF =>时,请求出ADAB的值(用含a 的代数式表示). 思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG∥AB 交AC 于点G ,构造相似三角形解决问题; 乙:过点F 作FG∥AC 交AB 于点G ,构造相似三角形解决问题; 丙:过点D 作DG∥BC 交CA 延长线于点G ,构造相似三角形解决问题; 老师说:“这三位同学的想法都可以” .图1图2请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问ADAB的值.25.在平面直角坐标系xOy 中,点C 坐标为(6,0),以原点O 为顶点的四边形OABC 是平行四边形,将边OA 沿x 轴翻折得到线段OA ',连接A B '交线段OC 于点D .EBACDFECABD F(1)如图1,当点A在y轴上,且A(0,-2)时.①求A B'所在直线的函数表达式;②求证:点D为线段A B'的中点.︒时,OA',BC的延长线相交于点M,试探究ODBM的值,并写出探究思路.门头沟区2016—2017学年度第二学期期末调研试卷八年级数学答案及评分参考图2xxy yAJ = 2.0厘∠°∠°显示句柄显示对象显示迭代象显示点MDA'AODA'AOCBBCxyAJ' = 2.02厘米∠°°MDA'AOBC三、解答题(本题共27分,第17~19题,每小题5分,第20、21每小题6分) 17.解:(1)∵ DE ⊥AB 于E ,∴∠DEB =90º.又∵∠C =90º,∴∠D E B =∠C . …………………………………………………1分 又∵∠B =∠B ,…………………………………………………2分 ∴△B E D ∽△B C A . ……………………………………………………3分(2)∵△BED ∽△BCA ,∴DE BDAC AB=.……………………………………………………4分∴2610BD=, ∴B D =103.……………………………………………………………………5分18.解:(1)答案不唯一,条件正确………………………………………………………1分 (2)证明:∵四边形ABCD 是正方形,∴AB ∥CD ,AB =CD ………………………………………………2分 ∴∠ABD =∠BDC ………………………………………………3分 又∵_______________(添加)∴△ABE ≌△CDF . ………………………………………………4分∴AE =CF . …………………………………………………………5分19.解:(1)设甲车离开A 城的距离s 甲与甲车行驶的时间t 之间的函数表达式为1s k t =甲(1k ≠0)根据题意得:300=51k , ∴1k =60,∴甲车离开A城的距离s 甲与甲车行驶的时间t之间的函数表达式为60s t =甲.……………………………………………………………………1分设乙车离开A 城的距离s 乙与甲车行驶的时间t 之间的函数表达式为22(0)s k t b k =+≠乙,根据题意得:224300k b k b +=⎧⎨+=⎩∴解得2100100k b =⎧⎨=-⎩∴…………………………………………………………2分∴乙车离开A 城的距离s 乙与甲车行驶的时间t 之间的函数表达式为100100s t =-乙………………………………………………………………………3分(2)由题意得:60(100100)50t t --=,(100100)6050t t --=解得:54t =,154t =,………………………………………………………………5分 20.解:(1)正比例函数2y x =的图象过点A (m ,4).∴ 4=2 m ,∴ m =2 .………………………………………………………………………1分又∵一次函数+n y x =-的图象过点A (m ,4). ∴ 4=-2+ n ,∴ n =6.………………………………………………………………………2分 (2)一次函数+n y x =-的图象与x 轴交于点B ,∴令y =0,0+6x =- ∴x =6 点B 坐标为(6,0).…………………………………………………4分 ∴△AOB 的面积164122=⨯⨯=.…………………………………………5分 (3)x >2.…………………………………………………………………………6分21.证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC .……………………………………………………………1分又∵DE ∥AC ,∴四边形ADEC 是平行四边形.………………………………………2分 又∵AC ⊥BC , ∴∠ACE =90º.∴四边形ADEC 是矩形.………………………………………………3分解:(2) ∵AC ⊥BC ,∴∠ACB =90º.∵M 是AB 的中点,∴AB =2CM =10.…………………………………………………………4分 ∵AC =8,∴221086BC =-=.又∵四边形ABCD是平行四边形,∴BC=AD.又∵四边形ADEC是矩形,∴EC=AD.∴EC= BC=6.……………………………………………………………5分∴矩形ADEC的面积=6848⨯=.……………………………………6分四、解答题(本题共25分,第22题5分,第23、24每小题6分,第25题8分)22.解:(1)正确画出图形:略…………………………………………………………3分(2)A1(3,4),B1(6,4)或A1(7,8),B1(4,8)或A1(3,8),B1(3,5)或A1(7,4),B1(7,7).…………………………………………………5分23.解:(1)8,12,0.24;………………………………………………………………3分(2)补全图形;……………………………………………………………………5分(3)216 .………………………………………………………………………6分24.解:(1)甲同学的想法:过点F作FG∥AB交AC于点G.∴∠GFE=∠ADE,∠FGE=∠DAE∴△AED∽△GEF.∴AD EDGF EF=.………………………1分∵E为DF的中点,∴ED=EF.∴AD=GF.………………………2分∵FG∥AB,∴△CGF∽△CAB.∴GF CFAB CB=.………………………3分∵12 CFBF=,∴13CFCB=.………………………………………………………4分∴13AD GF CFAB AB CB===.………………………………………5分乙同学的想法:过点F作FG∥AC交AB于点G.∴AD EDAG EF=.………………………1分∵E为DF的中点,∴ED=EF.∴AD=AG.………………………2分GECFGECBF∵FG ∥AC ,∴AG CFAB CB=.………………………3分 ∵12CF BF =, ∴13CF CB = .………………………………………………………4分 ∴13AD AG CF AB AB CB === .………………………………………5分 丙同学的想法:过点D 作DG ∥BC 交CA 延长线于点G .∴∠C =∠G ,∠CFE =∠GDE∴△GDE ∽△CFE . ∴GD ED CF EF= .………………………1分 ∵E 为DF 的中点,∴ED =EF .∴DG =FC .………………………2分 ∵DG ∥BC ,∴∠C =∠G ,∠B =∠ADG ∴△ADG ∽△ABC .∴AD DGAB BC=.………………………3分 ∵12CF BF =, ∴13CF BC = .………………………………………………………4分 ∴13AD DG CF AB BC BC === .………………………………………5分 (2)3AD a AB =.……………………………………………………………6分25. 解:(1)①四边形OABC 是平行四边形 ∴AO ∥BC ,AO =BC . 又∵点A 落在y 轴上, ∴AO ⊥x 轴, ∴BC ⊥x 轴.∵A (0,-2)C (6,0), ∴B (6,-2).……………………………………………………………1分又∵边OA 沿x 轴翻折得到线段OA ', ∴A '(0,2).……………………………………………………………2分 设直线A B '的函数表达式为(0)y kx b k =+≠ ,2,6 2.b k b =⎧⎨+=-⎩∴ ………………………………………………………………3分G EC A BD F11 解得2,2.3b k =⎧⎪⎨=-⎪⎩∴ ∴ A B '所在直线的函数表达式为223y x =-+. …………………4分 证明:②∵四边形OABC 是平行四边形,∴AO ∥BC ,AO =BC .∴∠OA B '=∠DBC .又∵边OA 沿x 轴翻折得到线段OA ',∴AO =OA '.∴OA '=BC .又∵∠A DO '=∠BDC ,∴△A DO '≌△BDC . ……………………………………………………5分∴A D '=BD ,∴点D 为线段A B '的中点. ……………………………………………6分解:(2)2OD BM =7分 思路:连接AA '交x 轴于F 点 证明F 为AA '的中点; ∴ 得出点D 为线段A B '的中点 ∵边OA 沿x 轴翻折得到线段OA '且 45AOC ∠=︒,∴45A OD ∠=︒', 90A OA ∠=︒'.∵AO ∥BC ,∴90M ∠=︒.过点D 作DE ∥BM 交OM 于点E ,可得12DE A D BM A B '==', 还可得到等腰直角△ODE . ∴2OD DE = ∴2OD BM =8分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分,谢谢!x yF EM D A'A OB C。
北京市东城区2015-2016学年八年级数学下学期期末考试试题本试卷共6 页,共100分。
考试时长100分钟,考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的1.下列四组线段中,可以构成直角三角形的是A.1,3,4 C. 1,2,3 D.4,5,62.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为A.3300m B.2200m C.1100m D.550m3.平行四边形ABCD 中,有两个内角的比为1:2,则这个平行四边形中较小的内角是A.45 B.60 C. 90 D. 1204.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的A. 中位数B. 众数C.平均数D. 方差5. 一次函数112y x=-+的图像不.经过的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为A.2 B.3 C.4 D.87.已知菱形的两条对角线的长分别是6和8,则菱形的周长是 A. 36 B. 30 C. 24 D. 208.若关于x 的一元二次方程2(5)410a x x ---=(a -5)有实数根,则a 的取值范围是 A .1a ≥ B .5a ≠ C .a >1且 5a ≠ D .1a ≥且5a ≠9.如图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式24x ax ≥+的解集为 A .32x ≥B .3x ≤C . 32x ≤ D .3x ≥10.如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,两个正方形重叠部分的面积为y ,则 下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题:(本题共24分,每小题3分)11.写出一个图象经过一,三象限的正比例函数(0)y kx k =≠的解析式 . 12. 甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”)图③图②图①13.方程220x x -=的根是 .14.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB 、BC 、CA 的中点,若CD =6cm ,则EF = cm .15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面 1 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x 尺,根据题意,可列方程为 .16. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为 (﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是 .(第15题(第16题) (第17题)如图,沿折痕AE 折叠矩形ABCD 的一边,使点D 落在BC 边上一点F 处.若AB =8,且⊿ABF 的面积为24,则EC 的长为 . 18.在数学课上,老师提出如下问题:小明的折叠方法如下:老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是_________________________. 三、解方程:(本题共8分,每小题4分)19.223+10x x -=20. 0182=+-x x .(用配方法)四、解答题:(本题共18分,21-22每小题4分,23-24每小题5分)21.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.22.列方程解应用题某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元,求2013年至2015年该地区投入教育经费的年平均增长率.23.如图,E、F分别是□ABCD的边BC,AD上的点,且BE=DF.(1)求证:四边形AECF 是平行四边形;(2)若BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长.24.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2). (1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.五、解答题:(本大题共20分,25-26题每题6分,27题8分)ABFDC25.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD 与边长为3的正方形AEFG 按图1位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上. (1)小明发现DG BE =且DG BE ⊥,请你给出证明.(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时△ADG 的面积.26. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21-y ax x ,求这个函数的表达式;(3) 将(2)中所得的函数的图象在直线a =2的左侧部分沿直线a =2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象直接写出:当关于a 的函数y =2a +b 的图象与此图象有两个公共点时,b 的取值范围是 .27.如图1,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,AB=2,直线MN :y=x﹣4沿x 轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被矩形ABCD 的边截得的线段长度为m ,平移时间为t ,m 与t 的函数图象如图2所示. (1)点A 的坐标为 ,矩形ABCD 的面积为 ; (2)求a ,b 的值;(3)在平移过程中,求直线MN 扫过矩形ABCD 的面积S 与t 的函数关系式(其中3t b ≤≤)东城区2015--2016学年第二学期期末教学统一检测 初二数学参考答案 2016.7 一、选择题:(本题共30分,每小题3分)二、填空题:(本题共24分,每空3分)11.答案不唯一,2y x =等 12.甲 13.120,2x x == 14.615. ()22251x x +=+ 16. (5,4) 17. 318. CD 和EF 是四边形DECF 对角线,而CD 和EF 互相垂直且平分(答案不唯一). 三、解答题:(本题共8分,每小题4分)2221219.3+102,3,14(3)421=1>013122211,.42x x a b c b ac x x x -===-=∆=-=--⨯⨯±==⨯==解:2分分分20.解:182-=-x x . …………………………………………………………1分1611682+-=+-x x .15)4(2=-x . ………………………………………………………2分 154±=-x .∴1541+=x ,1542-=x . ……………………………………4分 四、解答题:(本题共18分,21-22每小题4分,23-24每小题5分) 21. (1)平均数26件,中位数是24件,众数是24件。
北京市西城区2015— 2016学年度第二学期期末试卷八年级数学 2016.7试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列二次根式中,是最简二次根式的是( ).A B C D 2.平行四边形ABCD 中,若∠B =2∠A ,则∠C 的度数为( ). A .120 º B .60 ºC . 30 ºD . 15 º3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是( ).A .甲B .乙C .丙D .丁4.若A 1(1,)y ,B 2(2,)y 两点都在反比例函数x y 1=的图象上,则1y 与2y 的大小关系是( ).A .12y y <B .12y y =C .12y y >D .无法确定5.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,若AC =4,BD =6,则菱形ABCD 的周长为( ).A .16B .24C .D .6.下列命题中,正确的是( ).A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为( ).A .22.5 ºB .60 ºC .67.5 ºD .75 º8.关于x 的一元二次方程022=+-k x x 有两个实数根,则实数k 的取值范围是( ).A .1k ≤B .1>kC .1=kD .1k ≥9.已知正比例函数y kx =的图象与反比例函数my x=的图象交于A ,B 两点,若点A 的坐标为(-2,1),则关于x 的方程mkx x= 的两个实数根分别为( ). A .11x =-,21x =B .11x =-,22x =C .12x =-,21x =D . 12x =-, 22x =10.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为S 1,S 2,S 3,若S 1+S 2+S 3=18,则正方形EFGH 的面积为( ).图1 图2A .9B .6C .5 D.92二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.关于x 的一元二次方程x 2-6x +m =0有一个根为2,则m 的值为 .12.如图,在直角三角形ABC 中,∠BCA =90º,D ,E ,F 分别是AB ,AC ,BC 的中点,若CD =5,则 EF 的长为 .13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了拆线统计图(如图所示).在这40名学生的图书阅读数量中,中位数是 .14.将一元二次方程0142=++x x 化成2()x a b +=的形式,其中a ,b 是常数,则a +b = . 4 020 2123 24 8 20 数量人数15.反比例函数kyx在第一象限的图象如图,值,k=.16.如图,将矩形ABCD沿对角线BD与AD交于点E,若AB=3,BC=4,则DE17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为m.18.如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y 表示线段BP的长,y与x之间的关系如图2所示.则线段AB的长为,线段BC的长为.图1三、解答题(本题共16分,第19题8分,第20题8分) 19.计算:(11); (233÷. 解: 解:20.解方程:(1)2650x x -+=; (2)22310x x --=.解: 解:四、解答题(本题共34分,第21~22题,每小题7分,第23题6分,第24~25题,每小题7分)21.如图,在□ABCD 中,点E ,M 分别在边AB ,CD 上,且AE =CM .点F ,N 分别在边BC ,AD 上,且DN = BF .(1)求证:△AEN ≌△CMF ;(2)连接EM ,FN ,若EM ⊥FN ,求证:EFMN 是菱形. 证明:(1) (2)22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格.1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生 人; (2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上; (3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学要继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%.若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标? 解:(1)这个班共有女生 人; (2)补全条形图; (3)补全分析表; (4)(5)二1班女生体育模拟测试成绩分布6分16%7分16%8分28%9分20%10分16%5分4%初二1班全体女生体育模拟成绩 分布统计图成绩(分)初二1班全体男生体育模拟测试成绩23.如图,在四边形ABCD中,∠B=90º,AB=BC=2,AD=1,CD=3.求∠DAB的度数.解:24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别OA,OB,OC,OD 的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.(1)补全图形;(2)证明:(3)解:25.在平面直角坐标系xOy 中, 四边形OABC 是矩形,点B 的坐标为(4,3),反比例函数m y x=的图象经过点B .(1)求反比例函数的解析式;(2)一次函数1y ax =-的图象与y 轴交于点D ,与反比例函数my x=的图象交于点E .且△ADE 的面积等于6.求一次函数的解析式; (3)在(2)的条件下,直线OE 与双曲线(0)ky x x=>交于第一象限的点P ,将直线OE 向右平移214个单位后,与双曲线(0)ky x x =>交于点Q ,与x 轴交于点H ,若12QH OP =,求k 的值.备用图 解:(1)(2) (3)北京市西城区2015— 2016学年度第二学期期末试卷八年级数学附加题 2016.7试卷满分:20分一、填空题(本题6分)1.如图,在数轴上点A 表示的实数是 .2.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s 一定时,平均速度v 是运行时间t 的反比例函数.其函数关系式可以写为:sv t=(s 为常数,s ≠0) .请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例: ; 并写出这两个变量之间的函数解析式: .二、解答题(本题共14分,每小题7分)3.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围. (1)证明:解:(2)① ②4.四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON 与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30º,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程).图1解:(1)①补全图形;②AP与BN的数量关系,位置关系;证明:(2)北京市西城区2015— 2016学年度第二学期期末试卷八年级数学参考答案及评分标准2016.7一、选择题(本题共30分,每小题3分)三、解答题(本题共16分,每小题8分)19.(111);=(31)- .......................................................................................... 3分2 ............................................................................................................... 4分(2=3 ............................................................................................. 3分=........................................................................................................... 4分20.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+, .......................................................................... 1分所以,2(3)4x -=. ............................................................................................ 2分 由此可得32x -=±,所以,15x =,21x =. ..................................................................................... 4分 (2)解:2a =,3b =,1c =-. ...................................................................... 1分224342(1)17b ac ∆=-=-⨯⨯-=>0. ............................................. 2分方程有两个不相等的实数根x==,1x =2x =. ...................................................... 4分 四、解答题(本题共34分,第21~22题,每小题7分,第23题6分,第24~25题7分) 21.证明:(1)∵四边形ABCD 是平行四边形,∴AD=BC ,∠A =∠C ............................................................................. 1分 ∵ND=BF ,∴AD -ND=BC -BF .即AN=CF . ..................................... 2分 在△AEN 和△CMF 中,,,,AN CM A C AN CF =⎧⎪∠=∠⎨⎪=⎩∴△AEN ≌△CMF . ................................................................................ 3分 (2) 由(1)△AEN ≌△CMF∴EN=FM . ................................................................................................. 4分 同理可证:△EBF ≌△MDN .∴EF =MN . ................................................................................................. 5分 ∵EN=FM ,EF =MN .∴四边形EFMN 是平行四边形. .............................................................. 6分 ∵EM ⊥FN ,∴四边形EFMN 是菱形. .......................................................................... 7分22.解:(1)25; ............................................................................................................... 1分............................................................................................................................................... 2分(3)............................................................................................................................................... 4分(4)答案不唯一,如:从众数看,女生队表现更突出. ............................................. 5分 (5)4560%(536)25(20%16%)4⨯-++-+=.女生优秀人数再增加4人,才能完成康老师提出的全班优秀率达到60%的目标. ................................................................................................................................... 7分 23.解:连接AC , ............................................................................................................. 1分在Rt △ABC 中,∠B =90º,AB =BC =2, ∴∠BAC =∠ACB =45°, ............................ 2分∴222AC AB BC =+.∴AC = ............................................ 3分∵AD =1,CD =3,∴222AC AD CD +=. ................................. 4分在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º. .................................................... 5分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º. ............................................................................................... 6分5 6 7 8 9 10成绩(分)初二1班体育模拟测试成绩分析表24.(1)依题意,补全图形,如图所示; ....................................................................... 1分 (2)证明:∵点E ,F 分别OA ,OB 的中点,∴EF ∥AB ,12EF AB =. 同理,NM ∥DC ,12NM DC =. ............................................................. 2分 ∵四边形ABCD 是矩形, ∴AB ∥DC ,AB =DC ,AC =BD . ∴EF ∥NM ,EF =NM .∴四边形EFMN 是平行四边形. ......................................................... 3分 ∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点, ∴12OE OA =,12OM OC =. 在矩形ABCD 中, OA =OC =12AC ,OB =OD =12BD , ∴EM =OE +OM =12AC . 同理可证 FN =12BD .∴EM = FN .∴四边形EFMN 是矩形...................................................................... 4分(3)解:∵DM ⊥AC 于点M ,由(2)12OM OC = ∴OD =CD . 在矩形ABCD 中, OA =OC =12AC ,OB =OD =12BD ,AC =BD . ∴OA =OB =OC =OD .∴△COD 是等边三角形. ....................................................................... 5分 ∴∠ODC =60°. ∵NM ∥DC ,∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM = 90°-∠FNM =30°.∵ON =3,∴FN =2ON =6,FM =MN =3. ................................................. 6分 ∵点F ,M 分别OB ,OC 的中点,∴2BC FM ==∴矩形ABCD的面积为BC CD ⋅=. ............................................... 7分∴34m=. 解得 12m =.∴反比例函数的解析式为12y x=. .......................................................... 1分 (2)∵四边形OABC 是矩形,点B (4,3),∴A (0,3),C (4,0).......................................................... 2分 一次函数与y 轴交于点D , ∴点D (0,-1),AD =4. 设点E 的坐标为D (E x ,E y ). ∵△ADE 的面积等于6, ∴162E AD x ⋅=. ∴3E x =±. .............................. 3分 ∵点E 在反比例函数12y x=∴E (3,4)或E (-3,-4).当点E (3,4)在一次函数1y ax =-的图象上时, ∴431a =-. 解得53a =. ∴一次函数的解析式为:513y x =-. 当点(-3,-4)在一次函数1y ax =-的图象上时,此时一次函数的解析式为:1y x =-.综上,一次函数的解析式为:513y x =-或1y x =-. ................. 5分 (3)由(2)可知,直线OE 的解析式为 43y x =. 设点P (P x ,43P x ), 取OP 的中点M ,则12OM OP =. ∴M (12P x ,23P x ). ∴Q (12124P x +,23P x ).∴H (214,0).点P ,Q 均在反比例函数(0)k y x x=>上, ∴43P P x x ⋅=(12124P x +)23P x . ∴72P x =. ∴P (72,143), ∴493k =. ................................................................................................................ 7分北京市西城区2015— 2016学年度第二学期期末试卷八年级数学附加题参考答案及评分标准2016.7一、填空题(本题6分)1 .................................................................................................................... 3分2.答案不唯一,如:当三角形的面积S 一定时,三角形的一边长a 是这边上的高h 的反比例函数, ................................................................................................................... 1分2Sa h=(S 是常数,S ≠0). ............................................................................. 3分 二、解答题(本题共14分,每小题7分)3.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ................................................. 1分269m m =-+2(3)m =-. ............................................................................. 2分∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ................................................ 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=.∴1x =或23m x m-=. ∵3m >, ∴23321m m m-=->. ∵12x x <, ∴11x =,22332m x m m-==-. ..................................................... 5分②3m << .................................................................................. 7分4.解:(1)①补全图形,如图所示. ......................................................................................1分②AP =BN ,AP ⊥BN . ............................................................................................2分证明:延长NB 交OP 于点K ,交AP 于点H ,∵四边形ABCD 是正方形, ∴AO =BO ,AO ⊥BO . ∴∠1+∠2=90°.∵四边形OPMN 是正方形, ∴OP =ON ,∠PON =90°.∴∠2+∠3=90°. ∴∠1=∠3. ∴△APO ≌△BNO .∴AP =BN . ........................................................................................ 4分 ∴∠4=∠5.在△OKN 中,∠5+∠6=90°. ∴∠4+∠7=90°.∴AP ⊥BN . ...................................................................................... 5分(2)求解思路如下:a .类比(1)②可证△APO ≌△BNO ,AP =BN ,∠POT =∠MNS .b .作OT ⊥AB 于点T ,作MS ⊥BC 于点S ,如图所示. 由AB =2,可得AT =BT =OT =1.c .由∠APO =30º,可得PTBN =AP1,可得∠POT =∠MNS =60º. d . 由∠POT =∠MNS =60º,OP =MN , 可证△OTP ≌△NSM . ∴PT =MS∴CN =BN -BC1. ∴SC =SN -CN=2在Rt △MSC 中,222CM MS SC =+,∴MC 长可求. .............................................................................................. 7分PNP。
一、选择题(每题3分,共30分)1. 下列各数中,正整数是()A. -2.5B. -1/3C. 0D. 22. 若a > b,则下列不等式中错误的是()A. a + 3 > b + 3B. a - 3 < b - 3C. 2a > 2bD. a - 2b > b - 2a3. 下列函数中,自变量x的取值范围是()A. y = √(x - 1)B. y = x^2 - 4C. y = log2(x + 1)D. y = 1/x4. 下列各式中,分母有理数且分子为无理数的是()A. 2/√3B. √2/3C. √3/2D. 2/√55. 下列图形中,是平行四边形的是()A. 等腰梯形B. 等腰三角形C. 正方形D. 长方形6. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°7. 已知一次函数y = kx + b的图象经过点(1,3)和(-1,1),则该函数的解析式是()A. y = 2x + 1B. y = -2x + 1C. y = 2x - 1D. y = -2x - 18. 若a、b、c是△ABC的三边,且满足a + b > c,则下列结论正确的是()A. a > b + cB. b > c - aC. c > a + bD. c > b + a9. 下列函数中,图象为双曲线的是()A. y = x^2B. y = -1/xC. y = x^3D. y = x^2 + 110. 若sinα = 1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题3分,共30分)11. 若|a| = 3,则a的值为________。
12. 若∠A + ∠B + ∠C = 180°,则∠A、∠B、∠C分别为________。
北京市西城区2015— 2016学年度第二学期期末试卷八年级数学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列二次根式中,是最简二次根式的是( ). ABCD2.平行四边形ABCD 中,若∠B =2∠A ,则∠C 的度数为( ). A .120 º B .60 ºC . 30 ºD . 15 º3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是( ).A .甲B .乙C .丙D .丁4.若A 1(1,)y ,B 2(2,)y 两点都在反比例函数x y 1=的图象上,则1y 与2y 的大小关系是( ).A .12y y <B .12y y =C .12y y >D .无法确定5.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,若AC =4,BD =6,则菱形ABCD 的周长为( ). A .16 B .24 C . D .6.下列命题中,正确的是( ).A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为( ). A .22.5 ºB .60 ºBAC.67.5 ºD.75 º8.关于x 的一元二次方程022=+-k x x 有两个实数根,则实数k 的取值范围是( ).A .1k ≤B .1>kC .1=kD .1k ≥9.已知正比例函数y kx =的图象与反比例函数my x=的图象交于A ,B 两点,若点A 的坐标为(-2,1),则关于x 的方程mkx x= 的两个实数根分别为( ). A .11x =-,21x =B .11x =-,22x =C .12x =-,21x =D . 12x =-, 22x =10.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为S 1,S 2,S 3,若S 1+S 2+S 3=18,则正方形EFGH 的面积为( ).图1 图2A .9B .6C .5 D.92二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.关于x 的一元二次方程x 2-6x +m =0有一个根为2,则m 的值为 .12.如图,在直角三角形ABC 中,∠BCA =90º,D ,E ,F分别是AB ,AC ,BC 的中点,若CD =5,则 EF 的长为.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了拆线统计图(如图所示).在这40名学生的图书阅读数量中,中位数是 .14.将一元二次方程0142=++x x 化成2()x a b +=常数,则a +b = .15.反比例函数ky x=k 值,k = .16.如图,将矩形ABCD 沿对角线BD 面内,落点记为C ’,BC ’与AD 交于点E ,若 AB =3,长为 .17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为m.18.如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示.则线段AB的长为,线段BC的长为.图1 图2三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(111);(2.解:解:20.解方程:(1)2650x x -+=; (2)22310x x --=.解: 解:四、解答题(本题共34分,第21~22题,每小题7分,第23题6分,第24~25题,每小题7分)21.如图,在□ABCD 中,点E ,M 分别在边AB ,CD 上,且AE =CM .点F ,N 分别在边BC ,AD 上,且DN = BF .(1)求证:△AEN ≌△CMF ;(2)连接EM ,FN ,若EM ⊥FN ,求证:EFMN 是菱形. 证明:(1)(2)B22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格.1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生 人; (2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上; (3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学要继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%.若初二1班体育模拟测试成绩分析表二1班女生体育模拟测试成绩分布6分16%7分16%8分28%9分20%10分16%5分4%初二1班全体女生体育模拟成绩分布统计图 成绩(分)初二1班全体男生体育模拟测试成绩男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?解:(1)这个班共有女生人;(2)补全条形图;(3)补全分析表;(4)(5)23.如图,在四边形ABCD中,∠B=90º,AB=BC=2,AD=1,CD=3.求∠DAB的度数.解:C24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别OA,OB,OC,OD 的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.(1)补全图形;(2)证明:(3)解:25.在平面直角坐标系xOy 中, 四边形OABC 是矩形,点B 的坐标为(4,3),反比例函数m y x=的图象经过点B .(1)求反比例函数的解析式;(2)一次函数1y ax =-的图象与y 轴交于点D ,与反比例函数my x=的图象交于点E .且△ADE 的面积等于6.求一次函数的解析式; (3)在(2)的条件下,直线OE 与双曲线(0)ky x x=>交于第一象限的点P ,将直线OE 向右平移214个单位后,与双曲线(0)ky x x =>交于点Q ,与x 轴交于点H ,若12QH OP =,求k 的值.备用图 解:(1) (2)(3)北京市西城区2015— 2016学年度第二学期期末试卷八年级数学附加题 2016.7试卷满分:20分一、填空题(本题6分)1.如图,在数轴上点A 表示的实数是 .2.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s 一定时,平均速度v 是运行时间t 的反比例函数.其函数关系式可以写为:sv t=(s 为常数,s ≠0) .请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例: ; 并写出这两个变量之间的函数解析式: .二、解答题(本题共14分,每小题7分)3.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围. (1)证明:解:(2)①②4.四边形ABCD 是正方形,对角线AC , BD 相交于点O .(1)如图1,点P 是正方形ABCD 外一点,连接OP ,以OP 为一边,作正方形OPMN ,且边ON 与边BC 相交,连接AP ,BN .①依题意补全图1;②判断AP 与BN 的数量关系及位置关系,写出结论并加以证明;(2)点P 在AB 延长线上,且∠APO =30º,连接OP ,以OP 为一边,作正方形OPMN ,且边ON 与BC 的延长线恰交于点N ,连接CM ,若AB =2,求CM 的长(不必写出计算结果,简述求CM 长的过程).图1 图2解:(1)①补全图形;②AP 与BN 的数量关系 ,位置关系 ; 证明:P(2)。
北京市门头沟区2015-2016学年八年级数学下学期期末考试试题一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.若(3)1y m x =-+是一次函数,则A. 3m =B. 3m =-C. 3m ≠D. 3m ≠- 2.若一个多边形的内角和是它的外角和的二倍,则这个多边形是 A .三角形 B .四边形 C .六边形 D .八边形 3.一元二次方程(2)0x x -=的解是A .0x = B. 2x = C. 02x x ==或 D. 02x x ==且 4. 下列条件中,不能判断四边形ABCD 是平行四边形的是 A. AB∥CD ,AD ∥BC B. AB =CD , AD ∥BC C. AB ∥CD ,AB =CD D. ∠A =∠C ,∠B =∠D 5. 函数y =中的自变量x 的取值范围是 A .2x >- B .2x ≠- C .2x ≤- D . 2x ≥-6. 某校组织数学学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表,如果从这四位同学中选出一名晋级(总体水平高且状态稳定)你会推荐A . 甲B .乙C .丙D .丁7. 在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形六个几何图形中,既是中心对称图形又是轴对称图形的一共有A .2个B .3个C .4个D .5个8.若关于x 的一元二次的方程2320kx x --=有实数根, 则实数k 的取值范围是( ) A .98k ≥-B .98k ≤-C .98k ≥-且0k ≠D .98k ≤-且0k ≠ 9.为落实“阳光体育”健身行动,本区将开展一次足球邀请赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛.若应邀请x 个队参赛,则x 满足的关系式为( ) A .1(1)282x x -= B . 1(1)282x x += C . (1)28x x += D .(1)28x x -=10. 如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(本题共18分,每小题3分)11.点B (2,-3)关于x 轴对称的点'B 的坐标是_________________.12.若一元二次方程204cx bx -+=有两个相等的实数根,请写出一组满足条件的的b 、c 的取值,则b=________;c =_____________.13. 如图,菱形ABCD 的周长为16,∠ABC =120°,则AC 的长为____________.14.将一次函数2y x =的图象沿y 轴向上平移三个单位,则平移后的的表达式为________.15. 如图,正方形ABCD 和正方形CEFG 中, 点D 在CG 上,BC =1,CE =3,H 是AF 的中点, 那么CH 的长是_____________.16.在学习完一次函数的图象一课后,老师布置了一道作业题,要求作出21y x =-的图像,小明完成后说出了自己的做法:“我按照做函数图像的步骤,分别列出了x 、y 的五个以上的对应值,然后描点、连线就完成了此图像……”;小亮听后说:“小明,你的做法太繁琐了,老师刚才已经讲过了,只要找到x 、y 的两个对应值,描点、连线即可……”请你结合小亮说的话分析一下作一次函数图像蕴含的道理: _____________________________________三、解答题(本题共72分,14道小题,17题3分,18~27小题各5分,28题4分, 29题8分,30题7分)17.点(42,5)M a a -+在第二象限,求出a 的取值范围.18. 用配方法解方程:22310x x +-= .19. 用求根公式法解方程:2314x x += .20. 用适当的方法解方程:2280x x --= .小时)21. 如图是某种蜡烛在燃烧过程中高度与时间之间关系的图像,由图像解答下列问题: (1)求蜡烛在燃烧过程中高度y 与时间x 之间的函数表达式; (2)经过多少小时蜡烛燃烧完毕?22. 如图,在菱形ABCD 中,∠B =60°,AB=1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF . (1)求证:四边形ACEF 是矩形; (2)求四边形ACEF 的周长.B23.为了了解某中学初中二年级150名男学生的身体发育情况,从中对20名男学生的身高进行了测量,结果如下:(单位:厘米)175 161 171 176 167 181 161 173 171 177 179 172 165 157 173 173 166 177 169 181 图1是根据上述数据填写的频率分布表的一部分: (1)请填写表中未完成的部分;(2)样本数据中,男生身高的中位数是 厘米;(3) 该校初中二年级男学生身高在171.5---176.5(厘米)范围内的人数为 人;请在右面的坐标系用频数分布直方图的形式将此范围内的学生人数表示出来.24.0(1)若该方程的一个根为1,求a的值;25.如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点,请在题目中添加合适的条件,就可以证明:AP=CQ(1)你添加的条件是;(2)请你根据题目中的条件和你添加的条件证明AP=CQ.A26. 在平面直角坐标系内有一平行四边形点O(0,0),A(4,0) ,B(5,2),C(1,2),有一次函数y kx b=+的图象过点P(6,1).若此一次函数图象经过平行四边形OA边的中点,求k的值;若此一次函数图象与平行四边形OABC始终有两个交点,请求出k的取值范围.27.某商场某种商品平均每天可销售30件,每件盈利50元. 由于换季问题,需要尽快..减少库存,该商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.据此规律,每件商品降价多少元时,商场日盈利可达到2100元?28.在学习完一次函数的图像及其性质后,我们可以利用图像上“数对”的一些特殊情况,来重新看待和它相关的一元一次方程、二元一次方程组的解,一元一次不等式(不等式组)的解集问题,下面是有关的描述:图1是一次函数112y x=+的图象,由于当2x=-时,0y=,所以我们可以知道二元一D次方程112y x=+一组解是2xy=-⎧⎨=⎩;也可以得到一元一次方程1102x+=的解是,2x=-;同时还可以得到不等式1102x+<的解集是2x<-.请尝试用以上的内在联系通过观察图像解决如下问题:(1)观察图1请直接写出10112x<+<时,x的取值范围___________;(2) 请通过观察图2直接写出11222x x+>-+的解集 ______________;(3) 图3给出了1112y x=+以及2321y x x=-++的图象,请直接写出2121102x x x-++--<的解集_________________________.29. 已知在四边形ABCD中,点E、F分别是BC、CD边上的一点.(1)如图1:当四边形ABCD是正方形时,作出将ΔA DF绕点A顺时针旋转90度后的图形ΔABM;并判断点M、B、C三点是否在同一条直线上___________(填是或否);图1图2图3D(2)如图1:当四边形ABCD 是正方形时,且∠EAF =45°,请直接写出线段EF 、BE 、DF 三者之间的数量关系___________________ ;(3) 如图2:当AB =AD , ∠B =∠D =90°,∠EAF 是∠BAD 的一半, 问:(2)中的数量关系是否还存在,并说明理由;(4)在(3)的条件下,将点E 平移到BC 的延长线上,请在图3中补全图形,并写出EF 、BE 、DF 的关系.30.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t ,则另一个根为2t ,因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+,所以有2902b ac -=;我们记“292K b ac=-”即0K =时,方程20ax bx c ++=为倍根方程;下面我们根据此结论来解决问题:(1)方程① 220x x --=;方程②2680x x -+=这两个方程中,是倍根方程的是______________(填序号即可);(2)若(2)()0x mx n -+=是倍根方程,求2245m mn n ++的值;图1图2(3)关于x的一元二次方程223x n-+=(0m≥)是倍根方程,且点(,)A m n在一次函数38y x=-的图像上,求此倍根方程的表达式.门头沟区2015——2016第二学期期末调研评分参考八年级数学一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,14道小题,17题3分,18~27小题各5分,28题4分,29题8分,30题7分)222222310312233192421631741634344x x x x x x x x x +-=+=⎛⎫++=+⎪⎝⎭⎛⎫+= ⎪⎝⎭+==±-17.解:根据题意列不等式组得: 42050a a -<⎧⎨+>⎩………………………………………………………………………2分解得:2a > ………………………………………………………………………3分18.解:……………………………………………1分……………………………………………2分……………………………………………3分4分∴此方程的解为:1233,44x x ==- . …………………………5分 19.原方程整理得:23410x x -+= ∵ 3,4,1a b c ==-=∴2(4)43140∆=--⨯⨯=> ……………………………2分∴44266x ±==……………………………4分 ∴原方程的解为:1211,3x x == ……………………………5分 20.解:2280x x --=(4)(2)0x x -+= ……………………………2分∴40x -=或20x += ……………………………4分 ∴原方程的解为:124,2x x ==-. ……………………………5分21.解:(1)由图象可知过(0,15),(1,7)两点 ……………………………1分 设一次函数表达式为y kx b =+∴157b k b =⎧⎨+=⎩……………………………2分 解得158b k =⎧⎨=-⎩∴此一次函数表达式为:815y x =-+. ……………………………3分(2)令0y =∴8150x -+= ……………………………4分 解得:158x =答:经过158小时蜡烛燃烧完毕. ……………………………5分 22. 解:(1)∵DE=AD ,DF =CD ,∴四边形ACEF 是平行四边形,[………………………………………………………………1分∵四边形ABCD 为菱形,∴AD =CD ,∴AE =CF ,∴四边形ACEF 是矩形, [………………………………………………………………2分(2)∵△ACD 是等边三角形,∴AC =1,[∴EF =AC =1, [……………………………………………………………3分 过点D 作DG ⊥AF 于点G ,则AG =FG =AD ×cos30°=,∴AF =CE =2AG =,[(身高/厘米)………………………………………………………………4分∴四边形ACEF 的周长为:AC +CE +EF +AF =1++1+=2+2. ………………5分23.解:(1)每答对两空得1分,共2分………………………………………2分(2)172.5 ………………………………………3分(3)45人 ………………………………………4分……………………………………5分24.解(1):x 2+ax +a ﹣2=02120a a ++-= ………………………………………1分 解得:12a = ………………………………………2分 (2)证明:2224(2)48(2)4a a a a a ∆=--=-+=-+ …………………3分∵2(2)0a -≥∴2(2)40a -+>∴不论a 取何实数,该方程都有两个不相等的实数根 ………5分25.(1)添加条件正确: ………………………………1分(2)证明全等的过程正确 ………………………………4分 ∴AP=CQ . ………………………………5分26.解:(1)设OA 的中点为M∵O (0,0),A (4,0)∴OA =4∴OM =2∴(2,0)M ……………………1分∵图像过M 、P 两点 ∴6120k b k b +=⎧⎨+=⎩解得:14k = ……………………2分 (2)当图象过B 、P 两点时,代入表达式y kx b =+得到:6152k b k b +=⎧⎨+=⎩解得:1k =- ……………………3分当图象过A 、P 两点时,代入表达式y kx b =+得到:6140k b k b +=⎧⎨+=⎩解得:12k =……………………4分 所以112k -<< 由于要满足一次函数的存在性,所以112k -<<且0k ≠ …………………5分27. 设每件商品降价x 元,根据题意得: ………………………………………1分 (50-x )(30+2x )=2100 ………………………………………3分化简得:x 2-35x +300=0解得:x 1=15, x 2=20 ………………………………………4分 ∵该商场为了尽快减少库存,则x =15不合题意,舍去. ∴x =20答:每件商品降价20元,商场日盈利可达2100元. ……………………5分28.(1)20x -<< ……………………1分(2)0.4x > ……………………2分(3)0x <或 1.5x > ……………………4分29.(1)作图正确 …………………………………………………………………………1分 是 …………………………………………………………………………2分(2)EF BE DF =+ …………………………………………………………3分(3)存在理由如下:延长CB 到P 使BP DF =证明ABP ADF ∆≅∆的过程正确 …………………………………………………4分 ∵∠EAF=∴∠BAE +∠DAF =∠EAF∵∠BAP =∠FAD∴∠BAP+∠FAD=∠EAF即:∠EAP =∠FAE ………………………………………………………5分 证明APE AFE ∆≅∆得到 PE FE =∴EF BE DF =+ ………………………………………………………6分(4)补全图形正确 ………………………………………………………7分………………………………………………………8分 30.(1)答案: ② ……………………………………2分(2)整理 (2)()0x mx n -+=得:2(2)20mx n m x n +--=∵(2)()0x mx n -+=是倍根方程29K (2)(2)02n m m n ∴=---= ………………………………………………3分∴22450m mn n ++=…………………………………………………4分 (3)∵ 2203xn +=是倍根方程∴292K (023n =-⨯= ………………………………………………5分整理得:3m n =∵(,)A m n 在一次函数38y x =-的图像上∴38n m =- …………………………………………………6分∴1,3n m ==∴此方程的表达式为2203x += …………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.。