统计过程控制(SPC)之均值和极差控制图中均值图判定
- 格式:docx
- 大小:30.03 KB
- 文档页数:1
SPC所有公式详细解释及分析SPC(统计过程控制)是一种通过统计方法对产品或过程的变化进行控制的质量管理工具。
它以数据为基础,通过收集、分析和解释数据,帮助确定过程是否稳定、符合规范,并提供改进措施。
在SPC中,有一些重要的公式用于计算和分析数据,下面将介绍其中一些常用的公式及其详细解释和分析。
1. 平均值(Mean):平均值是统计数据的中心点,通过计算数据的总和除以数据的个数得到。
平均值用于评估过程的中心位置,并对过程的稳定性进行评估。
2. 中位数(Median):中位数是将数据按照大小顺序排列后,排在中间位置的数值,它能够反映数据的集中趋势。
与平均值相比,中位数对异常值的影响较小,更适用于非正态分布的数据。
3. 标准差(Standard Deviation):标准差是数据分布离散程度的度量,用于描述数据的波动性。
标准差越大,表示数据越分散;标准差越小,表示数据越集中。
标准差可以帮助确定过程是否稳定,是否存在特殊因素影响。
4. 变异系数(Coefficient of Variation):变异系数是标准差除以平均值的比值,用于比较不同数据集的离散性。
较小的变异系数表示数据越稳定,较大的变异系数表示数据集的离散性较大。
5. 极差(Range):极差是数据的最大值和最小值之间的差别,用于评估数据的波动范围。
较大的极差表示数据集的波动性较大,较小的极差表示数据集的波动性较小。
6. 四分位数(Quartiles):四分位数是将数据按大小顺序排列后,将数据分为四等份的数值。
第一四分位数是中位数的前一半数据的中位数,第二四分位数即中位数,第三四分位数是中位数之后的一半数据的中位数。
四分位数可以帮助了解数据的分布情况。
7. 直方图(Histogram):直方图使用柱状图形象地展示数据的分布情况。
通过将数据按照一定的区间划分,并统计每个区间内的数据个数,可以直观地了解数据的分布情况。
8. 管理图(Control Chart):管理图是SPC最重要的工具之一,它通过将数据的统计量(如平均值、标准差等)绘制在图表上,并与控制限进行比较,用于监控过程的稳定性。
SPC计算公式和判定准则SPC(Statistical Process Control,统计过程控制)是一种用于监测和控制过程稳定性的方法,通过对过程进行统计分析和监测,可以及时发现过程中的变异,从而采取相应的控制措施,提高过程的稳定性和可控性。
本文将介绍SPC的计算公式和判定准则,以帮助读者了解如何应用SPC进行过程监控和控制。
1. SPC计算公式SPC计算公式是用于计算各种统计指标和控制图的数学公式,下面是常用的SPC计算公式。
1.1 均值(Mean)均值是一组数据的平均值,用于表示过程的中心位置。
计算均值的公式如下:均值公式均值公式其中,mu 表示均值,n 表示数据的数量,x_i 表示第i 个数据。
1.2 极差(Range)极差是一组数据的最大值和最小值之差,用于表示过程的变异程度。
计算极差的公式如下:极差公式极差公式其中,R 表示极差,x_{\text{max}} 表示数据的最大值,x_{\text{min}} 表示数据的最小值。
1.3 标准偏差(Standard Deviation)标准偏差是一组数据的离均差平方和的平均值的平方根,用于表示过程的稳定性。
计算标准偏差的公式如下:标准偏差公式标准偏差公式其中,sigma 表示标准偏差,n 表示数据的数量,x_i 表示第i 个数据,\bar{x} 表示数据的均值。
2. SPC判定准则SPC判定准则用于判断一个过程是否处于稳定状态,常用的判定准则有以下几种。
2.1 均值控制图(Mean Control Chart)均值控制图用于监测过程均值是否稳定。
常用的均值控制图有Xbar-R 控制图和 Xbar-S 控制图。
•Xbar-R 控制图:对应的是过程均值和极差的统计指标。
当连续 n 个点全部落在中心线(均值线)的上方或下方时,表示过程中有特殊原因的变异,需要采取相应措施进行调整。
•Xbar-S 控制图:对应的是过程均值和标准偏差的统计指标。
当连续 n 个点全部落在中心线(均值线)的上方或下方时,表示过程中有特殊原因的变异,需要采取相应措施进行调整。
统计过程控制过程测量系统分析均值和极差法当确定了一个给定的过程要测量的特性值后,则应对这个(些)特性的测量系统进行评价从而确保为这个(些)特性而收集的SPC 数据进行有效的分析。
回顾由世界上所有的统计学家和质量专家共同发现的基本理论是,观测值由被测特性的真值加上测量误差组成,或:观测值=真值+测量误差]“测量误差”是一个统计学术语,意指造成观测值偏离真值的测量变异性的所有原因的净效果。
不幸的是,这个关系意味着我们在面临着一个问题:使用包含额外变差的信息(即数据)来对产品作出决定。
进一步展开说,在一批(子组)或多批(子组)至少包含两个测量值的一组数据中,整个时间内的总变异由两个相应的部分构成:总变异=生产变异+测量变异*减少测量变异对过程变异评价的影响是很重要的。
为了理全面地理解测量系统分析的各个方面,请参考由汽车工业行动集团(AIAG)于1990年12月出版的汽车工业《测量系统分析(MSA)手册》(附录H,参考文献15)。
本节这里介绍是在ASQC汽车部MSA手册中介绍的更先进的,同时也得到广泛应用的测量系统分析方法之一。
这是在进行统计近程控制之前对测量系统进行评价的一种比较容易接受的方法,但决不意味着这是唯一可接受的MSA技术。
另外,这里介绍的技术假设MSA手册中介绍的测量系统的其他关键因素即准确度、线性以及稳定性已经评价并认为可以接受。
均值和极差法均值和极差法[X—R,有时被称为大样法(Long Method)]是确定测量系统的重复性和再现性的一种数学方法。
该方法允许将测量系统分成两个独立的部分:重复性和再现性。
如果重复性比再现性大,原因可能是:·量具需要维修;·应重新设计量具使其更精密;·应改进量个的夹紧或定位装置;·零件内变差太大。
如果再现性大于重复性,则可能存在以下原因:·需要对操作员进行如何使用量具和读数的培训;·量具表盘上的刻度值不清楚;·可能需要某种形式的夹具来帮助操作者更为一致地使用量具。
SPC统计常用控制图评价引言SPC(Statistical Process Control,统计过程控制)是一种通过采集和分析过程数据,以便实时监控和控制过程稳定性的方法。
常用的SPC工具之一是控制图,它能够帮助我们识别过程中的特殊因素和常见问题,并实施相应的改进措施。
本文将介绍SPC常用控制图,并对其评价方法进行讨论。
一、SPC常用控制图1.1 均值图均值图(X-Bar图)是一种常用的控制图,用于监控连续型数据的均值是否稳定。
它通过绘制样本均值的变化情况,以及控制限的设置,来判断过程是否受到特殊因素的影响。
如果样本均值超出控制限范围,就说明过程出现了问题。
1.2 极差图极差图(R图)是另一种常用的控制图,用于监控连续型数据的变异性是否稳定。
它通过绘制样本极差的变化情况,以及控制限的设置,来判断过程是否存在异常变异。
如果样本极差超出控制限范围,就说明过程出现了问题。
1.3 标准差图标准差图(S图)是控制图中另一种用于监控连续型数据变异性的工具,它通过绘制样本标准差的变化情况,以及控制限的设置,来判断过程的稳定性。
如果样本标准差超出控制限范围,就说明过程存在异常变异。
1.4 化验图化验图(C图)是一种用于检测离散型数据的控制图。
它通过绘制样本中不良品的数量或比例的变化情况,以及控制限的设置,来判断过程是否稳定。
如果样本不良品数量或比例超出控制限范围,就说明过程存在问题。
二、控制图的评价方法控制图的评价方法主要包括特殊因素的判断和过程能力的评估。
2.1 特殊因素的判断特殊因素指的是导致过程异常的特殊因素,比如机器故障、操作失误、原材料问题等。
通过控制图的帮助,我们可以判断特殊因素是否存在。
一般来说,如果样本点落在控制限之外,或出现非随机的趋势、扰动或周期性变化,就可能是由特殊因素引起的。
在判断特殊因素的时候,还需要考虑其实质性和重复性,以避免过度反应。
2.2 过程能力的评估过程能力是指过程的稳定性和可控性。
质量控制中的统计过程控制方法在现代生产与制造领域,质量控制无疑是一个至关重要的环节。
为了确保产品或服务的质量达到标准要求,质量控制必须采用一系列有效的方法和手段。
其中,统计过程控制方法是一种被广泛应用的方法,以其全面、科学的数据分析方式,帮助企业实现质量的稳定和持续改进。
一、统计过程控制方法的定义统计过程控制(Statistical Process Control,简称SPC)是一种通过对生产过程中的关键指标进行监控和统计分析,从而判断过程是否处于可控状态、是否符合标准要求的质量管理方法。
其核心在于通过收集、整理并分析过程数据,以便对潜在的质量问题进行预警和控制,从而避免缺陷品的产生。
二、统计过程控制方法的基本原理1. 参数控制图参数控制图是SPC最为常用的工具之一,它基于样本数据的收集和分析来对过程的稳定性进行判断。
通常,参数控制图包括均值图和极差图。
在均值图中,通过绘制样本平均值的变化情况,判断过程是否可控,是否存在特殊因素的干扰;而在极差图中,通过绘制样本极差的变化情况,反映了过程的稳定性和一致性,有助于及时发现异常变化。
2. 过程能力分析过程能力分析是通过统计过程的实际输出结果与设定的规格限制进行比较,评估过程是否具备满足规格要求的能力。
在过程能力分析中,常用的指标是Cp、Cpk和Pp等,它们分别用于衡量过程的潜在能力和实际能力。
通过对这些指标的计算和分析,可以进一步确定是否需要采取措施来提高过程的稳定性和一致性。
三、统计过程控制方法的应用领域统计过程控制方法广泛应用于各个生产与制造领域,尤其是对于重复性高、量大、周期长的生产过程,其作用更为显著。
1. 制造业在制造业中,通过SPC方法可以实时监测生产线上的各项指标,及时发现并纠正潜在的质量问题,以确保产品符合质量标准。
同时,也可以通过分析数据,找出生产过程中的瓶颈,进而实现生产效率的提升和成本的控制。
2. 服务业SPC方法在服务业中同样发挥重要作用,特别是对于与客户需求直接相关的服务过程。
统计过程控制(Statistical Process Control, SPC)随着科技的发展,产品的制造过程日益复杂,对产品的质量要求日益提高,电子产品的不合格品率由过去的百分之一、千分之一降低到百万分之一(ppm),乃到十亿分之一(ppb),仅靠产品检验剔除不合格品,无法达到这样高的质量水平,经济上也不可行,必须对产品的制造过程加以控制,在生产的每一步骤实施控制。
为了实现对产品的制造过程加以控制,早在20世纪20年代休哈特就提出了过程控制理论以及控制过程的具体工具——控制图(controlchart)。
1931年休哈特出版了他的代表作:《加工产品质量的经济控制Economical Control of Quality of Manufactured Products》,这标志着统计过程控制时代的开始。
统计过程控制就是应用统计学技术对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的稳定水平,从而保证产品与服务符合规定的要求的一种技术。
它包含两方面的内容:一是利用控制图分析过程的稳定性,对过程存在的异常因素进行预警;二是计算过程能力指数分析稳定的过程能力满足技术要求的程度,对过程质量进行评价。
统计控制图1.控制图原理导致质量特性波动的因素根据来源不同可分为人员(Man)、设备(Machine)、原材料(M aterial)、工艺方法(Method)、测量(Measurement)和环境(Environment)六个方面,简称5M1E。
根据对产品质量的影响大小来分,可分为偶然因素(简称偶因,Commoncause)与异常因素(简称异因,在国际标准和我国国家标准中称为可查明原因,Special cause, assignablecause)两类。
偶因是过程固有的,始终存在,对质量的影响微小,但难以除去,如机器震动,环境温湿度的细微变化等。
异因则非过程固有,有时存在,有时不存在,对质量影响大,但不难除去,例如配件磨损等。
计量值控制图之均值-极差控制图
摘要:在处理一个计量值的控制图时,我们要控制的是这个质量特性的均值和变异数,其中包括均值控制图跟极差控制图,简称为X-R控制图.
均值-极差控制图
1.在处理一个计量值的控制图时,我们要控制的是这个质量特性的均值和变异数:
●要控制平均数,通常是使用均值控制图;
●而控制过程的分散或变异则使用极差控制图称R控制图;
2.同时维持过程均值和过程变异在控制状态下是很重要的
3.最常用、最基本的控制图
●用于控制对象为长度、重量、强度、厚度、时间等计量值;
●由用于描述均值变化的均值图和反映过程波动的极差控制图组成;
4.计算均值控制图与极差控制图的上下控制界限公式:
式中:A2 ,D3,D4 ——是由样本大小n确定的系数,可由下表查得。
当n≤6时,D3为负值,而R值为非负,此时LCL实质不存在。
此时,可令LCL=0作为下控制线。
均值控制图
主要用于诊断过程均值的异常波动:
极差R控制图
●均值控制图是对过程均值变化的诊断
●如果过程波动随时间变化是不稳定的
●那么在均值控制图上从不稳定过程中计算出的控制线,就不能反映只有随机
因素作用产生的过程波动
●因此对均值控制图的解释就会出现误导
●只有在稳定的过程中才可以构造控制图实施过程的诊断
●判断过程稳定需要用R控制图
计量值控制图主要用于长度、重量、时间、强度、成份等以计量值来管理工程的控制图,利用统计手法,设定控制均值X和极差R的界限,同时利用统计手法判定导致工程质量变异是随机原因,还是异常原因的图表。
均值-极差控制图是常用于SPC统计过程控制分析中,它们常用的两种控制图分析图表.。