15梁内力计算及内力图绘制(一)
- 格式:ppt
- 大小:246.00 KB
- 文档页数:15
可编辑修改精选全文完整版钢筋混凝土简支梁设计某厂房(3级建筑物),砖墙上支撑简支梁,该梁处于二类环境条件。
其跨长、截面尺寸如图所示。
承受的荷载为:均布荷载g k=20KN/m,均布活载q k=15KN/m(荷载分项系数取1.15),G k=28.6KN。
采用C25混凝土,纵向受力钢筋为HRB335级钢筋,箍筋为HPB235级钢筋试设计此梁并绘制配筋图。
钢筋混凝土简支梁设计一、基本资料(一)荷载分项系数1、永久荷载对结构有利r G=1.0,不利r G=1.22、可变荷载分项系数,一般情况下r Q=1.4,可控制r Q=1.15(二)材料强度设计值1、取G k=27KN,C25混凝土ƒc=11.9MPa, ƒt=1.27 MPa.2、钢筋级别为:纵向受力钢筋HRB335 ƒy= ƒy、=310 MPa,箍筋及其他纵向构造钢筋HPB235 ƒy=210 MPa.3、混凝土保护层厚度(环境类别二类环境)c=35㎜;最小配筋率ρmin=0.2%二、截面几何尺寸拟定(一)梁的截面高度h根据相应结构和设计经验与并考虑构造要求及施工方面等因素,按不需要作挠度验算的最小截面高度h,计算梁的高度.取表中独立梁:h=1/12×l0=1/12×5.84=487㎜;取h=550 (二)当梁的高度确定以后、梁的截面宽度可由常用的高宽比估计计算:矩形截面梁b=(1/2-1/3)h=(1/2-1/3)×550=183.3~275㎜,当量的宽度、高度计算完成后按建筑模数取整数;取b=200㎜,故截面几何尺寸为b×h=200×550㎜,如下图所示(三)计算跨度l0(式中a为支撑长度)l n=l-a=5840-240=5600㎜由l0=1.025 l n=5600×1.025=5740㎜l0= l n+a=5600+240=5840㎜取两者较小值;得l0=5740㎜(四)计算简图三、荷载计算钢筋混凝土容重r钢筋砼=25KN/㎡;水泥砂浆容重r砂浆=17 KN/㎡1、梁的自重计算标准值(包括侧梁、底15㎜抹灰重)g k=0.2×0.55×25+17×0.015×0.55×2+17×0.015×0.2=3.08KN/m22、荷载计算对于基本组合,荷载效应组合的设计值S应从下列组合中取最不利值(1)由可变荷载控制集中力:S F=r G G k=1.2×27=32.4KN均布荷载:S g= r G G k +r Q q k=1.2×3.08+1.4×15=24.70KN (2) 可永久荷载控制集中力:S F=r G G k=1.0×27=27KN均布荷载:S g= r G G k +r Q q k=1.0×20+1.15×15=37.25KN两者取较大集中值:S F=32.4KN均布荷载:S g=37.25KN四、内力计算内力图绘制(一)支座反力计算该结构为对承结构;根据材料力学理论可知,对承结构在对称荷载作用下,其支座反力为:R A=R B=S F+1/2×S g l0=32.4+1/2×37.25×5.74=139.31KN(二)设计值计算(式中a为集中力至支座边缘的距离)由材料力学理论得知,对称结构在对称荷载作用下采用叠加法得结构跨中控制截面弯矩设计值为:M max=S F a’+1/8S g l02=32.4×0.48+1/8×37.25×5.742=168.96KN/m(三)支座边缘截面的最大剪力设计值计算(a为支座的支撑长度)因:VA =VB=RA=139.31KN故:VA右=VB左=RA-1/2S g a=139.31-1/2×37.25×0.24=134.84KN(四)集中力(G+Q)处的剪力设计值计算(a为集中力至支座边缘的距离)V c右=RA- 1/2(g+q)a=139.31- 1/2×37.25×0.48=130.37KNV c左=RA- 1/2(g+q)a-(Q+G)=139.31- 1/2×37.25-25×0.48-32.4=97.97KN简支梁内力汇总表(五)弯矩与剪力图绘制五、截面几何尺寸复核因弯矩设计值较大设钢筋排二排:a s=c+d+e/2=35+10+25/2=57.5㎜,故a=60㎜;则截面有效高度h0=h-a=550-60=490㎜;因为是矩形截面好h0=h w;则h w/b=490/200=2.45﹤4;由0.25ƒc bh0=0.25×11.9×200×490=291.55KN﹥VA右;说明截面积和尺寸符合要求。
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5授课:XXX授课:XXX授课:XXX授课:XXX授课:XXX授课:XXX授课:XXX注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:m axy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
.\2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
5.2 多跨静定梁的内力计算与内力图绘制一、多跨静定梁的组成单跨静定梁多使用于跨度不大的情况,如门窗、楼板、屋面大梁、短跨的桥梁以及吊车梁等。
通常将若干根单跨梁用铰相连,并用若干支座与基础连接而组成的静定结构称为多跨静定梁。
如图5. 19(a)所示为房屋建筑中一木檩条的结构图,在各短梁的接头处采用斜搭接加螺栓系紧。
由于接头处不能抵抗弯矩,因而视为铰结点。
其计算简图如图5. 19(b)所示。
从几何组成上看,多跨静定梁的组成部分可分为基本部分和附属部分。
如图5. 19(b)所示,其中梁AB 部分,有三根支座链杆直接与基础(屋架)相连,不依赖其它部分构成几何不变体系,称为基本部分;对于梁的EF 和IJ 部分,因它们在竖向荷载作用下,也能独立保持平衡,故在竖向荷载作用下,可以把它们当作基本部分;而短梁CD 和GH 两部分支承在基本部分之上,需依靠基本部分才能保持其几何不变性,故称为附属部分。
为了清楚地看到梁各部分之间的依存关系和力的传递层次,可以把基本部分画在下层,把附属部分画在上层,如图5.19(c)所示,称为层次图。
BCDEFG H I(f)(g)AB CD E F GHA BCDE F GHII(a)(b)(c)(d)(e)ABCDEF GHIA B C D E F G H I JABCD EFG H IJ檩条屋架上弦图5.19二、多跨静定梁的内力计算从受力分析看,由于基本部分能独立地承受荷载而维持平衡,故当荷载作用于基本部分时,由平衡条件可知,将只有基本部分受力,附属部分不受力。
而当荷载作用于附属部分时,则不仅附属部分受力,其反力将通过铰结处传给基本部分,使基本部分同时受力。
由上述基本部分和附属部分力的传递关系可知,多跨静定梁的计算顺序应该是先计算附属部分,后计算基本部分。
计算附属部分时,应先从附属程度最高的部分算起;计算基本部分时,把计算出的附属部分的约束力反其方向,作为荷载作用于基本部分。