梁的支座反力计算和内力图绘制的简便方法
- 格式:doc
- 大小:122.00 KB
- 文档页数:2
求图示斜梁的支座反力6篇以下是网友分享的关于求图示斜梁的支座反力的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇1 用截面法计算如图所示外伸梁1-1,2-2, 截面上的内力,其中:M=1Fpa2C解:1)求支座反力MB=0A(a)∑Fp⨯3a-M-FAy⨯2a=0FP⨯a-M+FBy⨯2a=0∑M=0解得:FAy校核:51=Fp(↑)FBy=Fp(↓)4451∑Fy=FAy+FBy-FP=4FP-4FP-FP=02) 用截面依次在1-1,2-2 截面处截开,取左段为研究对象; 图(b):M1∑Fy=0c-FP-FQ1=0Q1(b)FQ1=-FP1-1∑M=0Fpa+M1=0M1=-Fpa2Ay∑Fy=0FAy-FP-FQ2=0 FQ2(c)1FQ2=FP42-2pa22.悬臂梁AB,在自由端受集中力偶M作用,试绘出此梁的剪力图和弯矩图∑M=0F+M=0M2=-FpaAFQ解:1)列剪力方程和弯矩方程• 将坐标x的原点取在A端,由直接法可得3.作剪力图和弯矩图Q0≤x≤L,M(x)=mA(a)FFQ图FQ(x)= Fp左=FAY=bFp /L (0(a) FQ(x) = Fp右=- FBY =-aFp /L,(aMc(x)= Mc(Fp左)= FAY x=bFpx/L(0M(x)= MZ(Fp右) = FBY (L-x)=aFp (L-x) /L, (aFpab/L• AC段:• 在x= 0,处,M(0)=MA= 0• 在x= a处,M(a)=MC=abFp /l, • CB段:在x=a处, M(a)= MC =abFp /l, 在x=0处, M(l)=MB=0, 当aFQ图在x=a处, Mmax =M(a)= MC =abFp /LM4.简支梁受力如图所示,试作出该梁的剪力图和弯矩图。
(a)ANqFAY = FsAFscCAC:0≤x 2FQ(x)=∑FpL=5-2xM(x)=∑Mz(FpL)=5x-x2MCBMC-=6kNm,FSC-=1kNA5k NCD:2≤x≤3 FQ(x)=FpL=5-2⨯2 M(x)=Mz(FpL)=5x-4(x-1)-4=MC+=2kNm, FSC+=∑∑x5 1 24633DB:3≤x≤4FQ(x)=∑Fpr=-3M(x)=∑Mz(FpL)=-3(4-x)课程学习>> 第三章>>典型例题[例题3-2-1]作简支梁的剪力图与弯矩图。
5.2 多跨静定梁的内力计算与内力图绘制一、多跨静定梁的组成单跨静定梁多使用于跨度不大的情况,如门窗、楼板、屋面大梁、短跨的桥梁以及吊车梁等。
通常将若干根单跨梁用铰相连,并用若干支座与基础连接而组成的静定结构称为多跨静定梁。
如图5. 19(a)所示为房屋建筑中一木檩条的结构图,在各短梁的接头处采用斜搭接加螺栓系紧。
由于接头处不能抵抗弯矩,因而视为铰结点。
其计算简图如图5. 19(b)所示。
从几何组成上看,多跨静定梁的组成部分可分为基本部分和附属部分。
如图5. 19(b)所示,其中梁AB 部分,有三根支座链杆直接与基础(屋架)相连,不依赖其它部分构成几何不变体系,称为基本部分;对于梁的EF 和IJ 部分,因它们在竖向荷载作用下,也能独立保持平衡,故在竖向荷载作用下,可以把它们当作基本部分;而短梁CD 和GH 两部分支承在基本部分之上,需依靠基本部分才能保持其几何不变性,故称为附属部分。
为了清楚地看到梁各部分之间的依存关系和力的传递层次,可以把基本部分画在下层,把附属部分画在上层,如图5.19(c)所示,称为层次图。
BCDEFG H I(f)(g)AB CD E F GHA BCDE F GHII(a)(b)(c)(d)(e)ABCDEF GHIA B C D E F G H I JABCD EFG H IJ檩条屋架上弦图5.19二、多跨静定梁的内力计算从受力分析看,由于基本部分能独立地承受荷载而维持平衡,故当荷载作用于基本部分时,由平衡条件可知,将只有基本部分受力,附属部分不受力。
而当荷载作用于附属部分时,则不仅附属部分受力,其反力将通过铰结处传给基本部分,使基本部分同时受力。
由上述基本部分和附属部分力的传递关系可知,多跨静定梁的计算顺序应该是先计算附属部分,后计算基本部分。
计算附属部分时,应先从附属程度最高的部分算起;计算基本部分时,把计算出的附属部分的约束力反其方向,作为荷载作用于基本部分。
梁的支座反力计算和内
力图绘制的简便方法本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
梁的支座反力计算和内力图绘制的简便方法1计算支座反力的简便方法
(1)悬臂梁的支座反力
在竖向荷载作用下,悬臂梁的固定端支座反力值就是加在梁上所有竖向荷载的代数和,其方向与荷载方向相反。
固定端的反力偶的值等于竖向荷载对固定端的力矩、其方向与竖向荷载对固定端的力矩方向相反。
(2)简支梁和外伸梁的支座反力
①对称荷载作用下的简支梁,支座反力可用一句话表示:“对称荷载对半分”,即两支座各承担荷载的一半。
②偏向荷载作用下的简支梁,可以用这样一句话求支座反力即:“偏向荷载成反比”。
梁一端的支座反力等于荷载的作用点到另一支座的距离和梁跨长度的比值再乘以荷载的大小。
③力偶荷载作用下的简支梁。
根据力偶的性质,力偶只能用力偶平衡。
因此,两支座反力必须组成一个转向与力偶荷载转向相反的力偶。
这两个支座反力方向相反,大小相等,其值等于力偶荷载与梁跨长度之比。
这种计算方法可以归结为这样两句话:力偶荷载反向转,大小等于偶跨比。
④外伸荷载作用下的简支外伸梁的支座反力求解,可以假想将远离外伸荷载的支座解除,使梁成为一个以另一支座为支点的杠杆、利用杠杆原理求出被解除支座的反力,而充当支点的支座反力值是荷载和被解除支座的反力之和,方向与二者相反。
所谓“外伸荷载选支点,杠杆原理求反力”。
⑤复杂荷载作用下的简支梁和外伸梁支座反力的求解,只不过是先将复杂荷载分别分解成各个简单荷载单独作用的情形,分别求出各简单荷载单独作用下引起的支座反力,然后求各支座反力的代数和,即求出应求的反力简单地说即为:“荷载分解,反力合成”。
2绘制内力图的简便方法
用截面法列内力方程求各截面内力很繁琐,特别是不连续荷载作用的梁必须分段来列方程,计算量很大,同时很容易搞错。
但是,我们在做题时不难发现,荷载种类不同‘作用情况不同,剪力和弯矩的变化是有一定规律的,利用这些规律可使计算工作量大大减少。
对于剪力图,变化规律是这样的:无荷载作用区段是水平线,均布线荷载作用区段是斜直线,力偶荷载对图形无影响,集中荷载作用点有突变。
对于弯矩图,变化规律是这样的:无荷载作用区段斜直线,均布荷载作用区段是抛物线,力偶荷载作用点处有突变,集中荷载作用点处有尖点。
利用上述规律绘制内力图的基本步骤:
(1)求支座反力。
(2)根据荷载和支座反力绘剪力图。
(3)根据各段剪力图的面积求出梁各特征点的弯矩值,确定极值,连接各点绘出弯矩图。
以上方法在掌握熟练之后。
计算过程可不必在纸面上出现,直接画出内力图,并标出内力值。
作完图后,再用剪力图和弯矩图变化规律去检查符合之则正确。
2。