边界层方程为
- 格式:ppt
- 大小:4.29 MB
- 文档页数:69
流体力学中三个主要力学模型流体力学是研究流体运动的一门学科,涉及到物理学、数学、工程学等多个领域。
在流体力学中,有三个主要的力学模型,分别是欧拉方程、纳维-斯托克斯方程和边界层方程。
这三个模型在不同的情况下有不同的应用,下面将分别介绍它们的基本原理和应用。
一、欧拉方程欧拉方程是描述流体运动的最基本的方程之一,它是由欧拉在1755年提出的。
欧拉方程是基于质点运动的牛顿第二定律得出的,它描述了流体在不受外力作用时的运动状态。
欧拉方程的基本形式如下:ρ/t + ·(ρu) = 0ρ(dv/dt) = -p其中,ρ是流体的密度,t是时间,u是流体的速度,p是压力,v是速度的随时间的变化率,是向量微分算子。
欧拉方程的应用范围很广,可以用来描述各种不可压缩流体的运动,例如水、油、气体等。
欧拉方程可以用来研究流体的基本运动规律,如速度分布、压力分布等。
欧拉方程还可以用来研究流体的力学性质,如流体的动量、能量守恒等。
二、纳维-斯托克斯方程纳维-斯托克斯方程是描述流体运动的另一个重要方程,它是由纳维和斯托克斯在19世纪提出的。
纳维-斯托克斯方程是基于牛顿第二定律和连续性方程导出的,它描述了流体在受外力作用时的运动状态。
纳维-斯托克斯方程的基本形式如下:ρ(dv/dt) = -p + μ^2v + f·v = 0其中,μ是流体的动力粘度,f是体积力,如重力、电磁力等。
纳维-斯托克斯方程适用于各种流体的运动,包括不可压缩流体和可压缩流体。
它可以用来研究流体的运动规律、流体的力学性质和流体的稳定性等问题。
纳维-斯托克斯方程还可以用来模拟流体在各种工程应用中的运动,如飞机、汽车、船舶等。
三、边界层方程边界层方程是描述流体在边界层内的运动的方程,它是由普拉特在1904年提出的。
边界层是指流体与固体表面接触的区域,它的厚度很小,但是流体的速度和压力在这个区域内发生了显著的变化。
边界层方程是基于牛顿第二定律和连续性方程导出的,它描述了流体在边界层内的运动状态。
普朗特边界层微分方程的推导学校:内蒙古工业大学 专业:力 学 姓名:宗宇显首先,我们明白普朗特边界层方程就是对二维定常纳维--斯托克斯方程在一定情况下的简化。
Ⅰ 二维定常纳维--斯托克斯方程连续性方程22221v ()u u p u u u X v x y x x y ρ∂∂∂∂∂+=-++∂∂∂∂∂ X 方向上的动量方程 (1.1) 2222v v 1v v v ()p u Y v x y y x yρ∂∂∂∂∂+=-++∂∂∂∂∂ Y 方向上的动量方程 Ⅱ 普朗特边界层理论相关知识2.1概念:定常绕流中流体粘性只在贴近物面极薄的一层内主宰流体运动,称这一层为边界层;边界层的流动可近似为无粘的理想流动。
2.2普朗特理论的基本思想:在大Re 数(一般在5×510~3×610)绕流中存在两个流动区域,即层流和紊流。
2.3边界层:流体流经固体壁面时,在固体壁面形成速度梯度较大的流体薄层。
2.4边界层厚度:以u =0.99U e 位置和壁面间的距离定义为边界层得厚度。
故考虑到不可压缩流体作平面层流,则质量力对流动产生的影响较小,所以由二维定常纳维--斯托克斯方程可得到去质量力的下列式子:连续性方程 22221v ()u u p u u u v x y x x yρ∂∂∂∂∂+=-++∂∂∂∂∂ X 方向上的动量方程 (1.2) v 0u x y∂∂+=∂∂v 0u x y∂∂+=∂∂2222v v 1v v v ()p u v x y y x yρ∂∂∂∂∂+=-++∂∂∂∂∂ Y 方向上的动量方程 Ⅲ 边界层中个物理量的数量级的确定 3.1边界层的厚度δ(x )量纲分析根据实验条件分析,边界层厚度δ(x )可能与流体微团的所在位置x ,流体速度U ,粘性系数μ,密度ρ有关。
设δ=k ·x m U n μk ρl ,根据量纲分析法可求的:m=12,n=-12,k=12,l=-12;即:δ(x )==···(1) 又因为Re x Ux Ux v ρμ== 则关于δ的关系式(1)写成无量纲的形式如下:~x δ=··(2) 取物体的长度L 取代上式中的x 值,则公式(2)变为~Lδ··(3) (符号“~”表示数量级相同)其中Re L 称为绕流场的雷诺数。
空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形能力上的不同。
2、静止流体在剪应力作用下(不论所加剪切应力T多么小,只要不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为流体的易流性。
3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗压缩变形的能力和特性称为弹性。
4、当马赫数小于0.3 时,气体的压缩性影响可以忽略不计。
5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性,相对错动流层间的一对摩擦力即粘性剪切力。
6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力。
流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。
在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。
例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。
8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。
由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强的量纲是[力]/[长度]210、标准大气规定在海平面上,大气温度为15 C 或T o =288.15K,压强p o = 760毫米汞柱二101325牛/米2,密度p二1.225 千克/米311 、从基准面到11 km 的高空称为对流层,在对流层内大气密度和温度随高度有明显变化,温度随高度增加而下降,高度每增加1km,温度下降6.5 K。
从11 km到21km的高空大气温度基本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。
流体力学第八章答案【篇一:流体力学第8、10、11章课后习题】>一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大;(3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)??v?vy?2v1?p?vy?????vx?x?y??x?y2????p??0?y???v?vy???0?x?y??其边界条件为:在y?0处,vx?vy?0 在y??处,vx?v(x)(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以?表示。
边界层的厚度?顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度?1?1?2、动量损失厚度?2?vx1?(v?v)dy?(1?)dy x??00vv?2?1?v2???vx(v?vx)dy???vxv(1?x)dy vv(四)边界层的动量积分关系式??2???p?vdy?v?vdy?????wdx xx??00?x?x?x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即p?常数。
这样,边界层的动量积分关系式变为?wd?2d?vdy?vvdy?? x?x??00dxdx?二、本章难点(一)平板层流边界层的近似计算根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。