《自动控制原理》线性定常系统的状态观测器
- 格式:pdf
- 大小:408.01 KB
- 文档页数:24
2018华中科技大学硕士研究生入学考试《自动控制原理》考试大纲科目名称:自动控制原理(含经典控制理论、现代控制理论)代码:829第一部分考试说明一.考试性质《自动控制原理》是为我校招收控制科学与工程专业硕士研究生设置的考试科目。
它的评价标准是高等学校优秀毕业生能达到良好及以上水平,以保证被录取者具有较扎实的专业基础。
二.考试形式与试卷结构(一)答卷方式:闭卷,笔试;(二)答题时间:180分钟。
(三)题型:计算题、简答题、选择题第二部分考查要点(一)自动控制的一般概念1.自动控制和自动控制系统的基本概念,负反馈控制的原理;2.控制系统的组成与分类;3.根据实际系统的工作原理画控制系统的方块图。
(二)控制系统的数学模型1.控制系统微分方程的建立,拉氏变换求解微分方程。
2.传递函数的概念、定义和性质。
3.控制系统的结构图,结构图的等效变换。
4.控制系统的信号流图,结构图与信号流图间的关系,由梅逊公式求系统的传递函数。
(三)线性系统的时域分析1.稳定性的概念,系统稳定的充要条件,Routh稳定判据。
2.稳态性能分析(1)稳态误差的概念,根据定义求取误差传递函数,由终值定理计算稳态误差;(2)静态误差系数和动态误差系数,系统型别与静态误差系数,影响稳态误差的因素。
3.动态性能分析(1)一阶系统特征参数与动态性能指标间的关系;(2)典型二阶系统的特征参数与性能指标的关系;(3)附加闭环零极点对系统动态性能的影响;(4)主导极点的概念,用此概念分析高阶系统。
(四)线性系统的根轨迹法1.根轨迹的概念,根轨迹方程,幅值条件和相角条件。
2.绘制根轨迹的基本规则。
3.0o根轨迹。
非最小相位系统的根轨迹及正反馈系统的根轨迹的画法。
4. 等效开环传递函数的概念,参数根轨迹。
5. 用根轨迹分析系统的性能。
(五)线性系统的频域分析1. 频率特性的定义,幅频特性与相频特性。
2. 用频率特性的概念分析系统的稳态响应。
3. 频率特性的几何表示方法。
自动控制原理 (胡寿松著) 科学出版社课后答案《自动控制原理》是胡寿松编著的一本关于自动控制原理的教材。
本书系统地介绍了自动控制的基本原理、方法和技术,适用于自动化、电气、机械等相关专业的本科生和研究生学习使用。
本书一共分为十一章,包括控制系统基础、传递函数与系统的时域特性、系统的频域特性、稳定性分析、根轨迹法、频率响应法、校正器设计、状态空间法、观测器设计、控制系统设计以及非线性系统控制等内容。
每一章都有相应的习题,用于检测学生对所学知识的掌握情况。
第一章:控制系统基础1. 控制系统的定义和分类。
控制系统是指通过对被控对象进行测量和判断,从而对被控对象进行控制的一种系统。
根据被控对象的特性和控制方式的不同,控制系统可以分为连续控制系统和离散控制系统。
2. 控制系统的基本组成。
控制系统由被控对象、测量元件、判断元件、执行元件和反馈元件组成。
3. 控制系统的基本特性。
控制系统的基本特性包括稳定性、灵敏度、精度和动态性能等。
第二章:传递函数与系统的时域特性1. 传递函数的定义和性质。
传递函数是描述控制系统输入和输出之间关系的函数。
传递函数具有线性性、时不变性和因果性等性质。
2. 系统的时域特性。
系统的时域特性包括阶跃响应、冲击响应和频率响应等。
第三章:系统的频域特性1. 频域特性的概念。
频域特性是指系统对不同频率的输入信号的响应情况。
2. 振荡特性的判据。
系统振荡的判据是极点的实部为零和虚部不为零。
第四章:稳定性分析1. 稳定性的定义。
稳定性是指系统在无穷远时间内对于有限输入的响应趋于有限。
2. 稳定性的判据。
稳定性的判据包括判别函数法、根轨迹法和Nyquist稳定判据等。
第五章:根轨迹法1. 根轨迹的概念和性质。
根轨迹是描述传递函数极点随参数变化而运动轨迹的图形。
2. 根轨迹的绘制方法。
根轨迹的绘制方法包括定性法和定量法。
第六章:频率响应法1. 频率响应的概念和性质。
频率响应是指系统对不同频率的输入信号的响应情况。
自动控制原理前置课程自动控制原理是电气工程、自动化及相关专业的一门重要课程,它涉及到系统建模、稳定性分析、控制器设计等多个方面。
在学习自动控制原理之前,需要掌握一系列的前置课程,以便更好地理解和应用自动控制原理。
一、自动控制原理概述自动控制原理主要研究如何实现自动化控制,通过对系统的建模、分析和控制,使系统在不同条件下达到预期性能。
这门课程的核心内容包括线性系统、非线性系统、稳定性分析、状态观测器、状态反馈控制器等。
学习自动控制原理,可以更好地理解和应用控制系统,提高工程实践能力。
二、前置课程分析1.数学基础课程:自动控制原理涉及大量的数学知识,如微积分、线性代数、概率论等。
掌握这些数学基础知识,有助于理解自动控制原理中的建模、分析和控制器设计等环节。
2.物理基础课程:自动控制原理中的很多概念和原理都与物理学密切相关,如力学、电磁学等。
学习这些物理课程,可以加深对自动控制原理的理解,提高解决实际问题的能力。
3.电气工程相关课程:如电路原理、信号与系统、电力电子技术等。
这些课程为自动控制原理提供了实际应用背景,学习这些课程可以更好地将自动控制原理应用于实际工程中。
三、自动控制原理的应用领域自动控制原理在众多领域都有广泛的应用,如工业控制系统、机器人控制、飞行器控制、交通运输系统控制等。
学习自动控制原理,不仅可以提高理论水平,还能为实际工程应用奠定基础。
四、学习自动控制原理的方法与建议1.注重理论联系实际:在学习过程中,要关注理论知识与实际工程应用的结合,通过实例加深对自动控制原理的理解。
2.加强数学基础:数学知识是学习自动控制原理的基础,要重视数学课程的学习,提高自己的数学素养。
3.多做练习题:通过做习题,检验自己对自动控制原理的理解和掌握程度,及时发现并弥补自己的知识盲点。
4.参加学术活动:积极参加相关学术活动,与同行交流自动控制原理的最新研究成果和应用经验,拓宽自己的视野。
5.动手实践:在实际项目中应用自动控制原理,提高自己的实际操作能力和解决问题的能力。
自动控制原理状态观测器知识点总结自动控制原理状态观测器是自动控制系统中的重要组成部分,用于实时地获取、估计和观测系统的状态信息。
在控制系统中,状态观测器的设计和性能直接影响系统的响应速度、稳定性和精度。
本文将对自动控制原理中的状态观测器进行知识点总结。
一、状态观测器的基本概念在自动控制系统中,状态观测器的主要作用是通过利用系统的输出信号来估计系统的状态变量,从而实现对系统状态的观测和监测。
状态观测器的设计目标是在系统的输出信号和已知的输入信号的基础上,使用数学模型来估计未知的状态变量。
二、状态观测器的数学模型状态观测器的数学模型通常由状态方程和输出方程组成。
状态方程描述了系统状态的动态变化规律,而输出方程描述了系统输出与状态之间的关系。
通过状态方程和输出方程,可以得到一个关于状态变量的估计值,从而实现对系统状态的观测。
三、状态观测器的设计原则1. 可观测性:系统的状态观测器设计需要满足可观测性的要求,即系统的状态变量可以通过系统的输出信号来观测和估计。
如果系统是可观测的,那么可以设计一个状态观测器来实现对系统状态的观测和估计。
2. 稳定性:状态观测器设计需要保证系统的稳定性,即系统的状态估计值与实际状态之间的差距趋于稳定。
稳定的状态观测器可以确保系统的控制效果和性能。
3. 收敛速度:状态观测器的设计需要考虑观测误差的收敛速度,即状态观测器对系统状态的估计速度。
较快的收敛速度可以更准确地估计系统的状态,提高控制系统的响应速度和精度。
四、常见的状态观测器算法1. 卡尔曼滤波器:卡尔曼滤波器是一种最优的状态观测器算法,适用于线性离散系统和线性连续系统。
卡尔曼滤波器通过递推方式对系统的状态进行估计,具有较好的稳定性和收敛速度。
2. 扩展卡尔曼滤波器:扩展卡尔曼滤波器是对非线性系统进行状态观测的一种方法。
它通过使用线性化的状态方程和输出方程,结合卡尔曼滤波器的思想进行状态估计。
3. 粒子滤波器:粒子滤波器是一种基于蒙特卡罗方法的非线性状态观测器算法。
自动控制原理自动控制原理是指自动控制系统的基础理论,它涉及系统的输入、输出、感知、计算、控制以及操纵器的运行。
自动控制系统可以自动完成一定的任务,其主要任务是维护机器或设备的状态按照预定的期望。
自动控制系统不仅可以自动控制一个系统,还可以控制多个设备系统,以此完成系统控制。
因此,自动控制系统可以大大提高工作效率,是实现许多复杂任务的关键技术。
自动控制系统是基于控制理论而建立的,控制理论是由控制系统、传感器、控制器、输入输出单元和观测器组成的。
这些部件完成一系列功能,使系统实现自控的目的。
控制系统中的控制器是自动控制的核心元素,是控制系统的主要部件。
它类似于一个电脑,用来运算、求解控制系统的模型,并输出控制信号来更新系统的变量。
根据输出的控制信号,控制器可以控制系统的运行状态,从而实现系统自动控制。
传感器是控制系统的重要部件,它可以检测系统内的变量,将其变量值传递给控制器,使控制器能够更新系统的变量。
传感器的类型多种多样,如温度传感器、湿度传感器、变频器和光学传感器等。
输入输出单元可以控制系统的输入和输出。
它可以通过控制器调节系统的输入信号,并将系统的输出结果输出到外部。
观测器可以用来检测系统的运行状态,它可以实时监测系统的输入和输出,以便及时发现系统故障。
自动控制原理是由传感器、控制器、输入输出单元和观测器组成的,可以实现机器的自动控制,使机器的运行更加精确和高效。
自动控制原理的主要内容包括:系统输入输出的检测、控制原理的研究、控制器的设计和实现、控制系统的构建和控制系统在应用中的研究。
首先,我们要研究系统输入输出的检测,包括传感器、控制器以及输入输出单元的设计和实现。
其次,我们要研究系统的控制原理,研究不同控制系统的不同部件如何协同工作,控制系统的作用是维持系统的状态,而不是充当机器的器官。
最后,要研究自动控制系统在应用中的研究,解决不同系统在复杂环境中的控制问题,研究不同控制系统的抗干扰能力。
线性定常系统的能控性和能观测性TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-线性定常系统的能控性和能观测性一、实验设备PC 计算机,MATLAB 软件,控制理论实验台。
二、实验目的(1)学习系统状态能控性、能观测性的定义及判别方法;(2)通过用 MATLAB 编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。
(3)掌握能控性和能观测性的概念。
学会用 MATLAB 判断能控性和能观测性。
(4)掌握系统的结构分解。
学会用 MATLAB 进行结构分解。
(5)掌握最小实现的概念。
学会用 MATLAB 求最小实现三、实验原理(1)参考教材 P117~118“利用 MATLAB 判定系统能控性”P124~125“利用 MATLAB 判定系统能观测性”(2)MATLAB 现代控制理论仿真实验基础(3)控制理论实验台使用指导四、实验内容(1)已知系统状态空间描述如下(1)判断系统状态的能控性和能观测性,以及系统输出的能控性。
说明状态能控性和输出能控性之间有无联系。
代码:A=[0 2 -1;5 1 2;-2 0 0];B=[1;0;-1];C=[1,1,0];D=[0];Uc=[B,A*B,A^2*B,A^3*B];rank(Uc)%能控性判断Uo=[C,C*A,C*A^2,C*A^3];rank(Uo)%判断能观性Uco=[C*B,C*A*B,C*A^2*B,C*A^3*B];rank(Uco)%判断输出能控性(2)令系统的初始状态为零,系统的输入分别为单位阶跃函数和单位脉冲函数。
用 MATLAB 函数计算系统的状态响应和输出响应,并绘制相应的响应曲线。
观察和记录这些曲线。
当输入改变时, 每个状态变量的响应曲线是否随着改变能否根据这些曲线判断系统状态的能控性(3)单位阶跃输入:代码:A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];D=[0];Uc=[B,A*B,A^2*B,A^3*B];rank(Uc)%判断状态能控性Uo=[C,C*A,C*A^2,C*A^3];rank(Uo)%判断能观性Uco=[C*B,C*A*B,C*A^2*B,C*A^3*B];rank(Uco)%判断输出能控G=ss(A,B,C,D);t=[0:.04:2];[y,t,x]=step(G,t);%单位阶跃输入plot(t,x,'b',t,y,'m')%状态及输出响应曲线legend('original target positions ','original target positions','X','Y')单位脉冲输入:代码:A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];D=[0];G=ss(A,B,C,D);t=[0:.04:2];[y,t,x]=impulse(G,t)%单位脉冲输入plot(t,x,'b',t,y,'m')%状态及输出响应曲线legend('original target positions','original target positions','X','Y')当输入改变时, 每个状态变量的响应曲线并没有随着改变。
《现代控制理论》线性定常系统的反馈结构及状态观测器现代控制理论中,线性定常系统的反馈结构及状态观测器是控制系统中的关键部分。
反馈结构和状态观测器的设计对于控制系统的性能和稳定性有着重要的影响。
本文将从反馈结构和状态观测器的定义、功能和设计方法等方面进行详细介绍。
首先,我们来介绍反馈结构。
反馈结构是控制系统中最常见的一种控制方式,通过将系统的输出信号与期望值进行比较,计算出控制量,并作为输入信号对系统进行控制,以实现对系统输出的调节。
在线性定常系统中,反馈结构一般由比例控制器、积分控制器和微分控制器组成,通过调节这些控制器的参数,可以实现对系统性能的优化。
其中,比例控制器用于调节系统的过渡过程,积分控制器用于消除系统的稳态误差,微分控制器用于抑制系统的振荡和提高系统的动态响应速度。
通过适当选择和调节这些控制器的参数,可以使系统的性能指标如超调量、响应时间等得到满足。
接下来我们来介绍状态观测器。
状态观测器是用于估计和反馈系统状态的一种装置,通过测量系统的输出信号和输入信号,以及系统的数学模型,来估计系统的状态。
状态观测器在控制系统中起到了关键的作用,可以实现对系统状态的估计和补偿,从而提高系统的稳定性和性能。
在线性定常系统中,状态观测器一般由状态估计器和状态补偿器组成。
状态估计器根据系统的输出信号和输入信号,以及系统的数学模型,通过运算得到系统的状态估计值,以反馈给系统进行控制。
状态补偿器则根据系统的状态估计值和期望值,以及系统的数学模型,通过运算得到控制量,以控制系统的输出。
关于反馈结构和状态观测器的设计方法,一般可以采用经典控制理论方法和现代控制理论方法。
经典控制理论方法主要包括根轨迹法、频率响应法等。
根轨迹法可以通过绘制系统的根轨迹图来分析系统的稳定性和性能,并通过调节控制器参数来满足系统的性能指标。
频率响应法则通过分析系统的频率特性来设计合适的频率补偿器,以达到系统的优化。
现代控制理论方法则主要包括状态空间法和最优控制方法。