分析力学第一章
- 格式:ppt
- 大小:714.50 KB
- 文档页数:12
《分析力学》大学笔记第一章引言1.1 学科背景介绍分析力学,作为物理学领域的一股重要力量,其诞生可追溯到对经典力学体系的深度反思与根本性重构。
在经典力学的框架内,力被视为描述物体运动状态改变的核心概念。
分析力学的出现,对这一传统观念进行了革命性的颠覆。
它不再将力作为最基本的物理量,而是转而聚焦于能量、动量等更为本质、更为普遍的物理属性。
这一转变并非凭空而来,而是基于现代数学工具的不断发展与完善,尤其是变分法和哈密顿原理的引入,为分析力学提供了坚实的数学基础。
通过这些高级数学手段,分析力学得以对力学系统进行更为精确、更为全面的描述。
它不仅极大地简化了复杂力学问题的求解过程,更在深层次上揭示了物理现象之间的内在联系与规律。
分析力学的兴起,不仅仅是对经典力学的一次重大革新,更是对整个物理学、数学乃至工程学领域产生了深远的影响。
在物理学的范畴内,分析力学的出现为后续的量子力学、相对论等前沿理论的发展奠定了坚实的基础。
在数学领域,分析力学所运用的高级数学方法推动了数学本身的进步与创新。
而在工程学实践中,分析力学的理论与方法被广泛应用于航空航天、机械制造、土木工程等诸多领域,为现代工程技术的飞速发展提供了有力的支撑。
分析力学的诞生与发展并非一帆风顺。
在其演进过程中,曾遭遇过诸多质疑与挑战。
但正是这些不断的争论与探索,使得分析力学得以不断完善与成熟,最终成为物理学领域中一门不可或缺的重要学科。
分析力学还与其他学科之间保持着密切的交叉与融合。
例如,在控制论中,分析力学的理论与方法被广泛应用于系统的稳定性分析与优化控制设计;而在生物学领域,分析力学的原理也被用于描述生物体的运动规律与能量转换过程。
这些跨学科的应用不仅展示了分析力学的广泛适用性,也进一步推动了相关学科的发展与创新。
分析力学作为物理学的一个重要分支,其背景深厚、影响深远。
它不仅在理论层面上对经典力学进行了深刻的反思与重构,更在实践层面上为众多领域的发展提供了强有力的支持。
第一章分析力学到现在为止,我们所研究的力学问题,基本上是用牛顿运动定律来求解的。
但用牛顿运动运动定律来求质点组的运动问题时,常常需要求解大量的微分方程组。
如果质点组受到约束,则因约束反力都是未知的,所以并不能因此而减少,甚至是增加了问题的复杂性。
十八、十九世纪,随着工业革命的迅速发展,在工程技术上迫切需要解决的又正好是这一类问题。
因此迫切需要寻求另外的方法来处理这一问题。
1788年,拉格朗日写了一本大型著作《分析力学》,在这一本著作中,完全用数学分析的方法来解决所有的力学问题,而无需借助以往常用的几何方法,全书一张图也没有。
在此基础上逐步发展成为一系列处理力学问题的新方法,称之为分析力学。
分析力学以拉格朗日和哈密顿等所建立的变分原理为基础,将力学的基本定律表示为分析数学的形式。
通过分析的方法来解决任意力学体系的运动问题,它所涉及的量是标量。
而牛顿力学涉及的量如力、速度、加速度等多为矢量。
由此看来,分析力学和牛顿力学只是同一个力学领域应用不同的数学描述而已。
对于自由质点和简单问题,两种方法无优劣(lie)之分,对复杂问题,分析力学的优越性就体现出来了。
分析力学是从能量的观点来研究力学问题,因而具有更广泛的应用价值。
它广泛的应用于结构分析、机器动力学与振动、航天力学、多刚体系统、机器人动力学以及各种工程技术领域,也可推广应用于连续介质力学和相对论力学。
许多新兴学科,如量子力学、相对论、电动力学、连续介质力学、天体力学、统计力学等等,都可以用到分析力学的理论和方法。
但是,由于分析力学中的数学推理较多,在历史上也发生过一些不良倾向,容易使人忘记力学的物理实质,对此我们应当引以为戒。
§1.1 广义坐标一、基本概念1、力学体系n 个相互作用着的质点构成的集合体。
2、 位形质点系各质点在空间的位置的有序集合,它决定了质点的位置和形状,也就是位形是质点系在空间的位置状态。
3、约束限制质点自由运动的条件。