范德瓦耳斯和他的状态方程 - 物理
- 格式:pdf
- 大小:152.29 KB
- 文档页数:6
波义耳定律范德瓦耳斯定律1、玻意耳定律:温度T不变,压强P是体积V的反比例函数,表示等温过程的P-V图象称为等温线.2、范德瓦耳斯方程:“对应态定律”,用临界参数π=p/pc,φ=V/Vc,θ=T/Tc 表示物质的状态,建立了一个适用于任何流体的普遍方程:π+ 3/φ2(3φ+1)=8θ.理论通过对物质聚集态的全面描述,给予了气体实验以极大的帮助.荷兰物理学家[范德瓦耳斯]把经验数据、分子模型、热力学和分子运动论结合起来,提出一个状态方程,它十分简单,有适度的准确性,而且从分子角度考虑十分容易理解. 范德瓦耳斯家庭出身较为贫寒,直到1862年才有机会上大学,当时他已二十五岁.他靠当中学教师维持生计,到1873年才最后完成莱顿大学的学位论文.荷兰的学位论文通常内容很充实,但范德瓦耳斯的论文总共只有一个主要工作.他改进了气体的状态方程,把分子间的作用力和分子的有限体积放进方程中去.他论证了,分子间距离较远时,它们间必定存在吸引力,这一作用附加到容器壁施加的压强上去.他进一步提供论据,假设附加产生的压强反比于气体比容的平方.还有,由于分子占有体积,它们可利用的空间必须减少,或者说得更明白些,减少的总体积就正比于分子在相互接触时所占有的体积.于是一摩尔真实气体的状态方程变成|>[tex](p + frac{a}{{V^2 }})(V - b) = RT[/tex]. 这简单方程包含两个常数,即a和b,对于每一种物质它们可由实验确定.R是普适气体数学. 特定情况下T恒定时的曲线,称做等温线(示意图略).它们分为两种类型:在高温时,等温线与p=常数的线只有一个相交点;在低温时有三个交点.把两族曲线分开的那条等温线有一个切线为水平线的拐点.这条等温线称为临界等温线,而拐点称为临界点.在高温限度内等温线与理想气体的线重合起来.低温时,等温线在一确定的体积间隔内,实际上为一条直线所取代,它相应于液体和蒸气同时存在.事实上,温度或压力固定时,一真实物质可以全部是液体或者全部是蒸气,也可部分液体部分蒸气.等温线的水平部分就表征了这一情况.水平线应位于何处?麦克斯韦用热力学证明了判据应是:由水平线和范德瓦耳斯等温线所确定的两个回线应有的相同面积. 仅仅只有两个经验常数的范德瓦耳斯方程就能够以很好的近似提供大量的数据,这是十分令人惊讶的. |>在临界点上,[tex]V_c = 3b[/tex],[tex]p_c = a/27b^2[/tex],[tex]T_c = 8a/27bR[/tex].于是把[tex]p/p_c = pi[/tex],[tex]V/V_c = phi[/tex]和[tex]T/T_c = theta[/tex]作为变量,方程中的常数就可以消去.这时范德瓦耳斯方程变成|>[tex](pi + frac{3}{{phi ^2 }})(3phi - 1) = 8theta[/tex]. 上式表达了对应态的规律.它曾推广应用于系统探究工作,特别是在有名望的莱顿实验室里更是如此. 在今天,人们已不大欣赏范德瓦耳斯工作的重要性了.现在,我们对[分子]了解得很多,因而他的结果就显得原始,甚至有点幼稚,但是当时[麦克斯韦]和[玻耳兹曼]却对它们产生极深的印象.玻耳兹曼在有关分子运动论的论著中,用很大一部分篇幅专门叙述范德瓦耳斯的工作,并称他为“在气体违背波义耳定律方面做出成绩的牛顿”,恰如麦克斯韦把[安培]称为“电学中的[牛顿]”一样.范德瓦耳斯将有生之年用于改进他的论文,这里我并非在嘲讽他,因为他的论文确实包含了极为丰富而重要的新思想.分子运动论逐步形成了一门有严密体系的精确科学.与此同时实验也越做越精,人们发现绝大多数气体的行为与理想气体的性质不符.1847年勒尼奥(Henri Victor Regnault,1810—1878)做了大量实验,证明除了氢以外,没有一种气体严格遵守波意耳定律,这些气体的膨胀系数都会随压强增大而变大.1852 年焦耳和W.汤姆生合作做了多孔塞实验.发现实际气体在膨胀过程中内能会发生变化,证明分子之间有作用力存在.1863 年安德纽斯的CO2 等温线(图2—6)说明CO2 气体存在一个临界温度31.3℃,高于这个温度无论如何也无法使气体液化.1871 年J.汤姆生(James Thomson,1822—1892)对气液两态问题提出了新的见解,他对安德纽斯的实验结果做了补充,认为在临界温度以下气液两态应有连续性的过渡,并且提出一个“~”形的等温线.不过他既没作定量计算也没有用分子理论加以解释.荷兰物理学家范德瓦耳斯(Johannes Diderik Van der Waals,1837—1923)1873 年在博士论文《论气态和液态的连续性》中考虑了分子体积和分子间吸力的影响,推出了著名的物态方程:(p+a/V2)(V-b)=RT后来人们称之为范德瓦耳斯方程.他还导出了b 是分子体积的4 倍.这个方程不仅能解释安德纽斯的实验结果及J.汤姆生的见解,而且能从常数a、b 值计算出临界参数,这对“永久气体”液化的理论起了指导作用.这篇论文是用荷兰文发表的,起初影响不大,后由于麦克斯韦注意到了他的论文,并于次年(1874 年)在有国际影响的《自然》杂志上对该文作了热情的述评,于是迅速为世人注意.1910 年范德瓦耳斯由于气体和液体状态方程的工作而获诺贝尔物理奖.1881 年范德瓦耳斯进一步提出“对应态定律”,用临界参数π=p/pc,φ=V/Vc,θ=T/Tc 表示物质的状态,建立了一个适用于任何流体的普遍方程:π+ 3/φ2(3φ+1)=8θ.尽管这个方程并不十分精确,但对实际工作例如对于早期尝试进行氢、氦的液化仍有一定的指导意义.范德瓦耳斯之所以能取得如此突出的成就,并在这一领域产生巨大影响,主要是由于他对分子运动比前人有更明确的概念,他继承并发展了波意耳、伯努利、克劳修斯等人的研究成果,并注意到安德鲁斯等人已经从实验发现了气液连续的物态变化,这些实验结果为他的工作提供了实践基础.。
vanderwaals方程van der Waals方程是荷兰物理学家Johannes Diderik van der Waals于1873年所提出的一种修正的气体状态方程。
传统的理想气体状态方程是基于理想气体模型推导得出的,其中假设气体分子是无大小、无相互作用及无体积的点粒子。
然而在高压、低温条件下,气体分子之间存在相互吸引力和有体积的效应,这些效应对气体的真实行为产生了显著影响,因此需要引入修正项。
van der Waals方程是对理想气体状态方程的修正,考虑了气体分子之间的相互作用和体积效应。
(P + a(n/V)^2)(V - nb) = nRT其中P为气体的压强,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度,a和b分别为van der Waals方程的修正参数,代表了吸引力和体积效应的影响。
修正项a用于考虑气体分子之间的吸引力效应。
吸引力使得气体分子更接近,导致气体分子的平均动能减小。
所以修正项a在方程中呈现为负号。
修正参数a的数值大小与分子间力的强度成正比,表示了分子间吸引力的强弱程度。
修正项b用于考虑气体分子的体积效应。
实际气体分子具有一定的体积,导致气体的真实体积比理想气体的体积要大。
所以修正项b在方程中也呈现为负号。
修正参数b的数值大小与分子的体积成正比,表示了分子间体积的大小。
van der Waals方程适用于理论和实验上对气体行为的描述。
通过修正的van der Waals方程,可以更准确地计算气体的压强、体积和摩尔数之间的关系。
特别是在高压、低温情况下,van der Waals方程的修正项对气体行为的描述更加精确。
除了van der Waals方程外,研究者们还提出了一些其他的修正方程,如Redlich-Kwong方程、Peng-Robinson方程等。
这些方程都是基于类似的思路,引入修正项来更好地描述气体的真实行为。
这些修正方程在工程领域和实际应用中有着广泛的应用,能够提供更准确的气体性质计算和预测。
1910年诺贝尔物理学奖——气液状态方程1910年诺贝尔物理学奖授予荷兰阿姆斯特丹大学的范德瓦耳斯(Johannes Diderik van der Waals,1837—1923),以表彰他对气体和液体的状态方程所作的工作。
19世纪末,分子运动论逐步形成了一门有严密体系的精确科学。
与此同时实验也越做越精,人们发现绝大多数气体的行为与理想气体的性质不符。
1847年勒尼奥(H.V.Regnault)做了大量实验,证明除了氢以外,没有一种气体严格遵守玻意耳定律,这些气体的膨胀系数都会随压强增大而变大。
1852年焦耳和W.汤姆孙合作做了多孔塞实验,发现实际气体在膨胀过程中内能会发生变化,证明分子之间有作用力存在。
1863年安德鲁斯( T. Andrews)的二氧化碳等温线说明二氧化碳气体存在一个临界温度31.3℃,高于这个温度无论如何也无法使气体液化。
1871年J.汤姆孙(James Thomson)对气液两态问题提出了新的见解,他对安德纽斯的实验结果做了补充,认为在临界温度以下气液两态应有连续性的过渡,并且提出一个“~”形的等温线。
不过他既没作定量计算也没有用分子理论加以解释。
把分子运动论的原理运用于气液两态,并成功地从理论上对两态之间的连续性过渡作出定量分析的就是荷兰物理学家范德瓦耳斯。
1873年他在博士论文“论气态和液态的连续性”中考虑了分子体积和分子间吸力的影响,推出了著名的物态方程:这就是脍炙人口的范德瓦耳斯方程,其中p,V,T分别是气体的压强、体积和温度,R是气体常数。
他还进一步导出了常数b是分子体积的4倍。
这个方程不仅能解释安德纽斯的实验结果及J.汤姆孙的见解,而且能从常数a,b值计算出临界参数,这对“永久气体”液化的理论起了指导作用。
这篇论文是用荷兰文发表的,起初影响不大,后由于麦克斯韦注意到了他的论文,并于次年(1874年)在有国际影响的《自然》杂志上对该文作了热情的述评。
麦克斯韦写道:“毫无疑问,范德瓦耳斯的名字将很快出现在第一流的分子科学家的名单中,可以肯定,不止一个科学家正在注意学习他写论文所用的低地荷兰语。
气体状态方程气体的状态可以通过气体状态方程来描述和计算。
气体状态方程是研究气体性质和行为的基础,它描述了气体的压力、体积和温度之间的关系。
在本文中,我将详细介绍三种常见的气体状态方程:理想气体状态方程、范德瓦尔斯气体状态方程和实际气体状态方程。
一、理想理想气体状态方程是最简单的气体状态方程,适用于低密度、高温、常压条件下的气体。
根据理想气体状态方程,气体的压力与体积成反比,与温度成正比。
其数学表达式为:PV = nRT其中,P代表气体的压力,V代表气体的体积,n代表气体的物质量,R代表气体常数,T代表气体的温度(绝对温度)。
理想气体状态方程揭示了气体状态之间的定量关系,可以用于计算气体的各项性质。
然而,理想气体状态方程只适用于理想气体,不考虑气体分子之间的相互作用和体积以及温度的变化对气体行为的影响。
二、范德瓦尔斯范德瓦尔斯气体状态方程是对理想气体状态方程的修正和拓展。
范德瓦尔斯气体状态方程考虑了气体分子之间的相互作用和气体分子的体积,并引入了修正因子。
其数学表达式为:(P + a/V^2)(V - b) = nRT其中,a和b为修正常数,与气体的性质有关。
范德瓦尔斯气体状态方程能够更准确地描述气体的行为,特别适用于高密度、低温、高压条件下的气体。
三、实际实际气体状态方程是更加精确地描述气体性质和行为的数学模型。
实际气体状态方程基于统计力学和热力学原理,考虑了气体分子之间的相互作用、体积的可压缩性以及温度对气体性质的影响。
常见的实际气体状态方程包括范德瓦尔斯方程的修正版本(如范德瓦尔斯-柯克伍德方程)和其他复杂的方程模型(如德拜-亥伯和魏兰德方程)。
这些方程模型在不同条件下对气体性质的计算更加准确,但由于其复杂性,通常只在科学研究和工程应用中使用。
总结气体状态方程是描述气体性质和行为的重要工具。
理想气体状态方程适用于低密度、高温、常压条件下的气体;范德瓦尔斯气体状态方程对气体分子相互作用和体积进行修正;而实际气体状态方程更加精确地描述了气体性质和行为。
理想气体的状态方程和分子动理论理想气体是指分子之间不存在相互作用力,分子体积可以忽略不计的气体。
它是研究气体行为和性质的理想化模型。
在研究理想气体时,我们通常采用状态方程和分子动理论来描述其性质和行为。
一、状态方程理想气体的状态方程描述了气体的压强、体积和温度之间的关系。
根据研究者的不同,有多种不同形式的理想气体状态方程。
其中最常用的是以下三个状态方程:理想气体状态方程、范德瓦尔斯方程和麦克斯韦-玻尔兹曼分布方程。
1. 理想气体状态方程理想气体状态方程由理想气体的压强、体积和温度三个物理量之间的关系构成。
它可以表示为:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的物质的量,R为气体常数,T表示气体的温度。
2. 范德瓦尔斯方程范德瓦尔斯方程是对理想气体状态方程的修正,考虑了分子之间存在的相互作用力和分子体积,可表示为:(P + an^2/V^2)(V - nb) = nRT其中,a和b为范德瓦尔斯方程的修正参数,能够更精确地描述气体的行为。
3. 麦克斯韦-玻尔兹曼分布方程麦克斯韦-玻尔兹曼分布方程描述了气体分子的速率分布。
根据该方程,气体分子的速率服从麦克斯韦-玻尔兹曼速率分布律,可表示为:f(v) = 4π((m/(2πKT))^3/2) * v^2 * exp(-mv^2/(2KT))其中,f(v)表示分子的速率分布函数,m为分子的质量,K为玻尔兹曼常数,T为气体的温度。
二、分子动理论分子动理论是研究气体分子运动及其性质的理论。
它基于分子的运动理论,解释了气体的压强、温度和体积等宏观性质。
1. 分子速率和平均速度根据分子动理论,气体分子的速率是不同的,呈速率分布。
根据麦克斯韦-玻尔兹曼分布方程,可以计算出气体分子的平均速度。
平均速度与气体的温度相关。
2. 分子碰撞和压强分子动理论认为,气体分子之间发生的碰撞会产生压强。
气体的压强由分子的碰撞频率和平均碰撞力决定。
根据分子动理论,压强与气体分子的速率和密度有关。
气体状态方程气体状态方程是描述气体物理性质的基本方程之一。
它是通过研究气体的温度、压力和体积之间的关系,提出了用来描述气体状况的数学公式。
本文将介绍三种常见的气体状态方程:理想气体状态方程、范德瓦尔斯气体状态方程和柯西状态方程。
一、理想理想气体状态方程是描述理想气体行为的基本方程,它表达了气体的压力、体积和温度之间的关系。
理想气体状态方程的数学表达式为:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质量,R为气体常数,T表示气体的温度。
理想气体状态方程是在一定的条件下成立的,即气体分子之间没有相互作用力,气体分子体积可忽略不计。
二、范德瓦尔斯范德瓦尔斯气体状态方程是对理想气体状态方程的修正与拓展。
范德瓦尔斯气体状态方程考虑了气体分子之间的相互作用力以及气体分子体积不可忽略的情况。
其数学表达式为:(P + an^2/V^2)(V - nb) = nRT其中,a和b为范德瓦尔斯常数,与不同气体的性质有关。
范德瓦尔斯气体状态方程能更准确地描述气体在高压和低温条件下的行为。
三、柯西状态方程柯西状态方程是描述气体的非理想性质的一种数学表达式。
它考虑了气体分子之间的相互作用力,尤其是在高压和低温条件下,气体分子之间会引起更明显的相互作用。
柯西状态方程的数学表达式为:P = nRT / (V - nb) - an^2 / V^2其中,a和b同样是柯西常数,用于修正气体分子之间的相互作用力和体积。
结论气体状态方程是研究气体行为的重要工具,不同的气体状态方程适用于不同的条件下。
理想气体状态方程适用于气体分子无相互作用力和体积可忽略的情况;范德瓦尔斯气体状态方程则考虑了相互作用力和体积的修正;柯西状态方程更适用于高压和低温条件下的非理想气体行为描述。
通过运用这些气体状态方程,我们可以更好地理解和研究气体的物理性质,为实际应用提供有力支持。
注:本文所提供的气体状态方程仅为最常见和基础的三种方程,实际还存在其他更复杂的气体状态方程,例如贝尔-昂萨格方程等,读者可以根据具体需要进一步学习和研究。
理想气体状态方程,范德瓦尔方程,维里方程理想气体状态方程指的是用于描述理想气体的受力性质的方程,它们是能够完全描述理想流体运动的最重要的三个方程,它们分别是范德瓦尔方程,维里方程和马氏势方程。
范德瓦尔方程,即流体力学的方程,由德国物理学家、流体力学家德卢斯·范德瓦尔(D.L.vonWaer)在1878年提出。
这个方程解决了流体不可压缩性,但具有弹性和流动性的条件。
它表示了流体总体上的平衡问题,并利用牛顿第二定律描述了流体小体上的动力学运动。
这个方程可以用拉格朗日——穆勒(Lagrange–Müller)形式来表示,即∇•[ρ(u•∇)u]=0其中ρ是流体的密度,u是流速的矢量。
右端的拉格朗日函数描述了流体的力学特性,即流体中的任意点的速度总是力学有序的,这与牛顿第二定律有关。
维里方程,又称为速度场方程,也被称为Pal von Karman method,是由法国物理学家吉恩·维里在1868年首次提出的,用于描述空气动力学的概念,是空气动力学的基础。
它的表达式是:∂u/∂t+u·∇u=1/ρ∇P-ΓK其中u是空气的速度矢量,P是压力,ρ是空气的密度,K是Kelvin-Helmholtz张量,Γ是重力加速度。
马氏势的方程是由德国物理学家、力学家西雅图·马氏(X. vonMaucher)在1902年提出的,用来描述流体的热性质。
马氏势方程有一般形式和特定形式两类。
一般形式:T∇μ+μ∇T-T∇S=0其中T是温度,μ是熵,S是熵密度。
它表明,当温度发生变化时,熵会随之变化。
它还揭示了温度、熵和熵密度之间的关系,这在万有引力场动力学有所体现。
特定型马氏势方程:h=h(s,t)S=S(s,t)这两个方程将温度、熵和焓分别连接起来,可用来描述温度、熵和焓之间的改变。
总体而言,范德瓦尔方程、维里方程和马氏势方程是用于描述理想气体的三个最基本的方程。
它们分别是流体力学方程、速度场方程和马氏势方程。
范德瓦尔斯方程a和b的物理意义
【范德瓦尔斯方程】
考虑到实际气体分子互相之间有作用力,实际压强要比理想气体的要小。
状态方程可用“范德瓦尔斯方程”,
范德瓦尔斯方程:(p+m2M2aV2)(V−mMb)=mMRT
a和b 为范德瓦尔斯常量。
【传输过程】
实际情况中存在很多“非平衡态”;系统处于非平衡态时存在物理量的“传输”。
有如下经验公式。
1. 动量传输
若一个气体中存在两个平均速率明显不同的气体部分;这种非平衡态中,两个部分之间会有“动量传输”。
考虑一个气体分子从一个部分跑到另一部分,那么它的动量将会变化,即受力。
有公式,
黏力:df=−η (dvdz)z0dS
设想两个部分之间交界处有一块面积dS,通过这个面积的分子所受力(黏力)为df。
η为黏度常数。
2. 能量传输
设想有两个温度不同的物体,它们之间存在着能量传递。
有公式
傅里叶热传导公式:dQ=−κ(dTdz)z0dS dt
两个物体交界处取一块面积dS,在时间dt 内通过dS 的热量dQ (dS 附近分子能量的变化)满足以上方程。
κ为热导率。
3. 质量传输
设想有两种分子体系放在一起,那么他们间存在“质量传输”;或称之为“扩散运动”。
扩散:dM=−D(dρdz)z0dS dt
选一块面积dS,dt 时间内通过dS 的质量dM 满足上式。
【热力学第零定律】
两个处于平衡态的物体A 和B 如果分别和另一处于平衡态的物体C 处于平衡态,那么A 和B 放到一起时也平衡。
这些平衡态处于同一温度。
【热力学第三定律】绝对零度不可达到。
物态方程与实际气体与范德瓦尔斯方程物态方程是描述物质在不同状态下的性质和相互关系的数学等式。
它对于研究气体特性以及工程应用非常重要。
范德瓦尔斯方程是一种修正的物态方程,可以更准确地描述理想气体与实际气体之间的差异。
一、理想气体与实际气体理想气体是指在一定温度和压力下,分子之间的相互作用可以忽略的气体。
对于理想气体,物态方程可简化为PV = nRT(其中P为压力,V为体积,n为分子的摩尔数,R为气体常数,T为温度)。
然而,实际气体在高压和低温条件下,分子之间的吸引力和排斥力会显著影响其行为,导致物态方程不能完全适用。
二、范德瓦尔斯方程的提出为了更准确地描述实际气体的性质,荷兰物理学家约翰内斯·迪德里克·范德瓦尔斯于19世纪末提出了范德瓦尔斯方程。
范德瓦尔斯方程修正了理想气体方程中的假设,引入了修正因子来考虑真实气体分子之间的吸引力和排斥力。
范德瓦尔斯方程的一般形式为(P + a/V^2)(V - b) = nRT,其中a和b为范德瓦尔斯常数,与气体的性质有关。
a/V^2表示吸引力的修正,b表示分子体积的修正。
三、范德瓦尔斯方程的应用范德瓦尔斯方程的引入使得我们能够更准确地预测实际气体的行为,特别是在高压和低温条件下。
这对于工程应用尤其重要,例如在化学工业中对气体混合物的分离和精馏过程中,准确描述气体的性质可以提高工艺效率并降低能源消耗。
范德瓦尔斯方程也被用于研究气体的相变现象。
相变是指物质从一种物态转变为另一种物态的过程,例如液化、升华和冷凝等。
通过范德瓦尔斯方程,我们可以计算出气体在不同温度和压力下的相变点,从而深入了解气体在不同条件下的行为。
除了范德瓦尔斯方程,还有其他物态方程被用于描述实际气体的行为,例如德拜方程和贝尔方程等。
这些方程都是在理想气体方程的基础上,引入了修正因子来考虑实际气体的性质。
总结:物态方程对于研究气体的性质和行为具有重要意义。
范德瓦尔斯方程是一种修正的物态方程,可以更准确地预测实际气体的行为。