九年级数学直线与圆的位置关系1
- 格式:pdf
- 大小:1.15 MB
- 文档页数:8
课题:九年级数学《直线与圆的位置关系(1)》教学设计常州市新北区实验中学曹亦祥 213022【教材简解】《圆》这一章是在直线型图形的有关性质和判定的基础上,进一步探索特殊的曲线型图形——圆的有关性质,本章在平面几何中乃至整个初中数学教学中都占有极其重要的地位。
直线和圆的位置关系这一单元内容又是《圆》这一章的核心内容,因为学过这一部分内容后,以前学过的直线形的几何知识可以更丰富地结合圆这一背景来进行考查,知识的综合性、能力的要求将明显地增强,所以这一部分内容的学习也是学生学习《圆》这一章的难点。
学生在此之前学习了圆的基本性质,了解点和圆的三种位置关系及对应的数量关系,这些都为本节课的学习奠定了基础。
而直线与圆的位置关系中最重要的位置关系是直线与圆相切,它在日常生活、生产中有着丰富的应用,教材后续的三课时安排的是系统地学习切线的性质与判定知识。
所以在整章教材体系中,《直线与圆的位置关系(1)》起到了承前启后的作用,地位相当重要。
【目标预设】1.经历探索直线与圆的位置关系的活动过程,理解根据直线与圆公共点个数不同,将直线与圆的位置关系分三类:相离、相切、相交;2.类比研究点与圆位置关系的方法研究直线与圆的位置关系,感悟直线与圆的位置关系决定圆心与直线的距离d与圆的半径r之间数量关系;反之可用d与r 之间的数量关系来判断直线与圆的位置关系,体会“类比”和“数形结合”的思想;3.知道直线与圆的位置关系可以转化为点(垂足)与圆的位置关系来研究,体会两者之间的联系,感悟“转化”的思想;4.学会用运动观点审视直线与圆的位置关系,有意识地去分析运动问题中的变量与不变量,运用所学知识解决问题。
【教学重点、难点】教学重点:会用d与r的数量关系来判断直线与圆的位置关系;教学难点:1.探索直线与圆的位置关系及与之对应的数量关系,理解直线与圆的位置关系可以转化为点(垂足)与圆的位置关系;2.在动态问题中能运用d与r的数量关系来判断直线与圆的位置关系。
浙教版数学九年级下册2.1《直线与圆的位置关系》教学设计1一. 教材分析《直线与圆的位置关系》是浙教版数学九年级下册第2章第1节的内容。
本节主要介绍了直线与圆的位置关系,包括相离、相切和相交三种情况,并学习了判断直线与圆位置关系的方法。
通过本节的学习,为学生后续学习圆与圆的位置关系、圆的切线等内容打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和判定有一定的了解。
但直线与圆的位置关系较为抽象,需要学生具备较强的空间想象能力和逻辑思维能力。
在导入环节,可以利用生活中的实例激发学生的学习兴趣,引导学生主动探究直线与圆的位置关系。
三. 教学目标1.理解直线与圆的位置关系,掌握判断直线与圆位置关系的方法。
2.能够运用直线与圆的位置关系解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.直线与圆的位置关系的判断方法。
2.直线与圆位置关系在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例导入,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究直线与圆的位置关系,培养学生的空间想象能力和逻辑思维能力。
3.案例教学法:通过典型例题,让学生掌握判断直线与圆位置关系的方法。
4.小组合作学习:鼓励学生相互讨论,共同解决问题。
六. 教学准备1.教学课件:制作直观生动的课件,帮助学生理解直线与圆的位置关系。
2.实例图片:准备一些生活中的实例图片,用于导入和巩固环节。
3.练习题:挑选一些典型习题,让学生在课堂上练习。
七. 教学过程1.导入(5分钟)利用生活实例,如自行车的轮子、太阳的位置等,引导学生思考直线与圆的位置关系。
展示课件,让学生初步了解直线与圆的位置关系。
2.呈现(10分钟)展示直线与圆的位置关系的图片,引导学生观察并总结出直线与圆的相离、相切和相交三种情况。
讲解判断直线与圆位置关系的方法,如圆心到直线的距离与圆的半径之间的关系。
3.操练(10分钟)让学生分组讨论,每组找一个实例,运用所学的方法判断直线与圆的位置关系。
北师大版数学九年级下册3.6《直线和圆的位置关系》教案1一. 教材分析北师大版数学九年级下册3.6《直线和圆的位置关系》是本节课的主要内容,这部分内容是在学生已经掌握了直线、圆的基本性质的基础上进行学习的。
通过学习直线和圆的位置关系,可以让学生更好地理解直线和圆之间的相互关系,为后续学习圆的方程和解决实际问题打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直线和圆的基本性质有了初步的了解。
但是,对于直线和圆的位置关系的理解和应用还有一定的困难。
因此,在教学过程中,需要引导学生通过观察、思考、探究,从而理解直线和圆的位置关系,并能够运用到实际问题中。
三. 教学目标1.让学生理解直线和圆的位置关系,并能够运用到实际问题中。
2.培养学生的观察能力、思考能力和探究能力。
3.培养学生的合作意识和交流能力。
四. 教学重难点1.直线和圆的位置关系的理解和应用。
2.如何引导学生通过观察、思考、探究来理解直线和圆的位置关系。
五. 教学方法1.观察法:通过观察直线和圆的位置关系,让学生直观地理解直线和圆的位置关系。
2.讨论法:引导学生通过小组讨论,共同探究直线和圆的位置关系。
3.练习法:通过适量的练习,让学生巩固对直线和圆的位置关系的理解。
六. 教学准备1.准备一些直线和圆的图片,用于导入和呈现。
2.准备一些练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示一些直线和圆的图片,让学生观察并思考直线和圆之间的相互关系。
引导学生提出问题,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT或者黑板,呈现直线和圆的位置关系的定义和性质。
引导学生理解直线和圆的位置关系,并能够运用到实际问题中。
3.操练(10分钟)让学生进行一些实际的操作,例如画出给定直线和圆的位置关系,或者找出给定直线和圆的位置关系。
通过操作,让学生加深对直线和圆的位置关系的理解。
4.巩固(10分钟)让学生做一些练习题,巩固对直线和圆的位置关系的理解。
初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。
圆与直线的位置关系与判定圆与直线是几何学中最基本的图形,它们之间的位置关系和判定方法在数学问题中有着广泛的应用。
本文将从不同角度探讨圆与直线之间的位置关系,并介绍几种常用的判定方法。
一、圆与直线的位置关系1. 直线经过圆心:当一条直线穿过圆心时,我们称其为圆的直径线或直径。
直径线是圆的特殊位置关系,它将圆分成两个相等的半圆,且直径线的长度等于圆的直径。
2. 直线在圆内部:当一条直线完全位于圆的内部时,我们称之为直线在圆内部。
在这种情况下,直线与圆相交于两个不同的点。
例如,图中的直线AB位于圆O的内部。
3. 直线切圆:当一条直线与圆相切时,我们称之为直线切圆。
直线与圆相切于圆上的一点,此点既属于圆,又属于直线。
例如,图中的直线AB切圆O于点C。
4. 直线在圆外:当一条直线完全位于圆的外部时,我们称之为直线在圆外部。
在这种情况下,直线与圆没有交点。
例如,图中的直线AB位于圆O的外部。
二、圆与直线的位置判定方法1. 判断直线是否经过圆心:通过直线的方程可以判断该直线是否经过圆心。
直线的方程一般可以表示为y = kx + b的形式,其中k为斜率,b为截距。
如果圆的圆心坐标为(x0, y0),则当直线方程中的x0和y0满足方程y = kx + b时,直线经过圆心。
2. 判断直线与圆的位置关系:通过直线与圆的方程可以判断它们的位置关系。
设圆的方程为(x - a)^2 + (y - b)^2 = r^2,直线的方程为y =kx + c。
将直线的方程代入圆的方程中,可得一个关于x的一元二次方程。
通过求解该方程,可以得到方程的解,从而判断直线与圆的位置关系。
3. 判断直线是否切圆:通过直线与圆的切点个数可以判断直线是否切圆。
直线与圆相切时,方程的解只有一个,此时直线切圆。
当方程有两个不相等的解或者无解时,直线与圆没有交点。
4. 判断直线是否在圆内部或外部:通过圆的半径和圆心到直线的距离可以判断直线是否在圆的内部或外部。
直线与圆的位置关系【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.切线的定义:直线与圆有唯一的公共点时,这条直线叫做圆的切线,这个唯一的公共点叫做切点.此时直线与圆的位置关系称为相切.2.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.3.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点进阶:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的性质定理和判定定理1.切线的性质定理:圆的切线垂直于过切点的半径.要点进阶:切线的性质定理中要注意:圆的切线是与过切点的半径垂直,不是与任意半径都垂直.2.切线的判定定理:过半径外端且垂直于半径的直线是圆的切线.要点进阶:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、直线与圆的位置关系例1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离类型二、切线的判定与性质例2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.例3.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.例4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.O C B A举一反三:【变式1】如图,在△ABC 中,∠CAB=90°,∠CBA=50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED=EA . (1)求∠DOA 的度数;(2)求证:直线ED 与⊙O 相切.举一反三:【变式2】如图所示,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 等于( )A .2B .3C .22D .23类型三、三角形的内切圆例5.如图,已知O 是△ABC 的内心,∠A=50°,求∠BOC 的度数.O C BA【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【巩固练习】一、选择题1.已知:如图,PA ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB=65°,则∠APB 等于( ) A .65° B .50° C .45° D .40°2.如图,AB 是⊙O 的直径,直线EC 切⊙O 于B 点,若∠DBC=α,则( ) A .∠A=α B .∠A=90°-α C .∠ABD=α D .∠α2190o-=ABD第1题图 第2题图3.设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 应满足的条件是( )A.d=3B. d <3C. d≤3D.d>34.如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP 的度数为( )A .40°B . 35°C . 30°D . 45°5.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA=( ) A.30° B.45° C.60° D.67.5°6.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°二、填空题7.如图,AB是⊙O的直径,BC切⊙O于点B,AC交⊙O于点D.若AC=5,BC=3,则⊙O的半径为_______.8.如图,⊙O的切线PC交直径AB的延长线于点P,C为切点.若∠P=30°,⊙O的半径为1,则PB的长为______________.9.在△ABO中,OA=OB=2cm,⊙O的半径为1cm,当∠ABO=时,直线AB与⊙O相切.10.如图所示,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=________.OCB A 11.如图所示,已知△ABC ,AC =BC =6,∠C =90°,O 是AB 的中点,⊙O 与AC 、BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G ,则CG =________.12.木工师傅可以用角尺测量并计算出圆的半径r .用角尺的较短边紧靠O ,并使较长边与O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边8cm AB .若读得BC 长为cm a ,则用含a 的代数式表示r 为 .三、解答题13. 如图,已知⊙O 是边长为2的等边△ABC 的内切圆,求⊙O 的面积.14. AB 是⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于D 点,过D 作⊙O 的切线DE 交BC 于E.求证:CE=BE.15.如图,AB是⊙O的弦,OC⊥OA,交AB与点P,且PC=BC,求证:BC是⊙O的切线.。
浙教版数学九年级下册2.1《直线与圆的位置关系》说课稿1一. 教材分析《直线与圆的位置关系》是浙教版数学九年级下册第2章第1节的内容。
本节课主要介绍了直线与圆的位置关系,包括相切、相交和相离三种情况,并学习了如何判断直线与圆的位置关系。
教材通过实例和问题,引导学生探究和发现直线与圆的位置关系,培养学生的空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对图形的性质和判定有一定的了解。
但是,对于直线与圆的位置关系的理解和应用,部分学生可能会感到困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导和指导。
三. 说教学目标1.知识与技能目标:学生能够理解直线与圆的位置关系的概念,学会判断直线与圆的位置关系。
2.过程与方法目标:学生通过观察、操作和思考,培养空间想象能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,增强对数学学习的信心和兴趣。
四. 说教学重难点1.教学重点:直线与圆的位置关系的概念和判断方法。
2.教学难点:直线与圆的位置关系的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和合作学习法。
2.教学手段:利用多媒体课件和实物模型进行教学。
六. 说教学过程1.导入:通过实例展示直线与圆的位置关系,引发学生的兴趣和思考。
2.新课导入:介绍直线与圆的位置关系的概念和判断方法。
3.案例分析:分析具体案例,让学生理解和掌握直线与圆的位置关系的判断方法。
4.课堂练习:学生自主完成练习题,巩固所学知识。
5.应用拓展:学生分组讨论,探索直线与圆的位置关系在实际问题中的应用。
6.总结:对本节课的内容进行总结,强调直线与圆的位置关系的重要性和应用价值。
七. 说板书设计板书设计如下:直线与圆的位置关系八. 说教学评价教学评价主要包括学生的课堂参与度、作业完成情况和课堂表现等方面。
通过观察学生的学习情况和反馈,了解学生对直线与圆的位置关系的理解和掌握程度,及时进行教学调整和改进。
《直线与圆的位置关系(1)》教学设计1.学习目标描述(知识与技能、过程与方法、情感态度与价值观)知识与技能:1.利用投影演示探索直线和圆的运动变化过程,经历直线与圆的三种位置关系得产生过程;2.在运动中体验直线与圆的位置关系,并观察理解直线与圆的“公共点的个数”的变化,培养猜想、分析、概括、归纳能力.3.正确判别直线与圆的位置关系,或根据直线与圆的位置关系正确的得出圆心到直线的距离与圆的半径之间的大小关系或直线与圆的公共点的个数.情感态度与价值观:1.通过本节课的学习,深刻体会直线与圆的位置关系在生活中的广泛存在和运用价值,激发学生的学习兴趣,使学生主动参与数学学习活动。
2.在判别直线与圆的位置关系中进一步培养学生观察、分析、归纳、概括等一般能力和审美能力。
2. 学习重难点分析图片电脑演示:海上日出1.观察三幅太阳升起的照片,地平线与太阳的位置关系是怎样的?2.观察三幅太阳落山的照片,地平线与太阳的位置关系是怎样的?你发现这个自然现象反映出直线和圆的位置关系有哪几种?观察图形,归纳出直线和圆的位置关系的定义及相关概画出圆心到直线关系。
学生学生回答后,教师总结并板书:如果⊙O的半径w为r ,圆心O 到直线l的距离为d,,那么:(1)直线l和⊙O相学会用4560H pAB 例1、在Rt△ABC 中,∠C=90°,AC=3cm,BC=4cm,以C 为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm,(2)r=2.4cm,(3)r=3cm.(此题为课本第36页课内练习第1题的第2小题)分析:因为题中给出了⊙C的半径,所以解题的关键是求圆心到直线的距离,然后与r 比较,确定⊙C与A B的关系.例2、已知Rt△ABC的斜边AB=8cm,直角边AC=4cm. 以点C为圆心作圆,当半径为多长时,AB与⊙C相切?例2:点O为∠ABC平分线例3、(即课本的例2)如图,海中有一个小岛P,该岛四周12海里内暗礁.今有货轮四由西向东航行,开始在A点观测P在北偏东60°处, 行驶10海里后到达B点观测P在北偏东45°处,货轮继续向东航行.你认为货轮继续向东航行途中会有触礁的危险吗?分析:要解决这个问题,首先要把它转化为学生和老师一起解AC DB。
初中数学如何判断一条直线与圆的位置关系
判断一条直线与圆的位置关系有几种情况:相离、相切、相交。
下面我将详细介绍这些情况以及判断的方法:
1. 直线与圆相离:
当直线与圆没有交点时,它们被认为是相离的。
判断直线与圆相离的方法有两种:-计算直线到圆心的距离,如果距离大于圆的半径,则直线与圆相离。
-判断直线与圆的方程是否满足不相交的条件。
2. 直线与圆相切:
当直线与圆有且仅有一个交点时,它们被认为是相切的。
判断直线与圆相切的方法有两种:
-计算直线到圆心的距离,如果距离等于圆的半径,则直线与圆相切。
-判断直线与圆的方程是否满足切线的条件。
3. 直线与圆相交:
当直线与圆有两个交点时,它们被认为是相交的。
判断直线与圆相交的方法有两种:-计算直线与圆心的距离,如果距离小于圆的半径,则直线与圆相交。
-判断直线与圆的方程是否满足相交的条件。
在判断直线与圆的位置关系时,可以使用以下工具和方法:
-距离公式:计算直线到圆心的距离可以使用距离公式来求解。
-圆的方程:圆的方程可以用来判断直线与圆的位置关系。
需要注意的是,判断直线与圆的位置关系时,可以结合使用上述方法,以确保准确判断它们之间的关系。
以上是关于判断直线与圆的位置关系的方法和步骤的介绍。
希望以上内容能够满足你对直线与圆位置关系的了解。