实验三:matlab求代数方程的近似根(解)
- 格式:ppt
- 大小:288.00 KB
- 文档页数:21
Matlab数值实验求代数方程的近似根(解)教程一、问题背景和实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景和实验目的求代数方程的根是最常见的数学问题之一(这里称为代数方程,主要是想和后面的微分方程区别开.为简明起见,在本实验的以下叙述中,把代数方程简称为方程),当是一次多项式时,称为线性方程,否则称之为非线性方程.当是非线性方程时,由于的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间,或给出某根的近似值.在实际问题抽象出的数学模型中,可以根据物理背景确定;也可根据的草图等方法确定,还可用对分法、迭代法以及牛顿切线法大致确定根的分布情况.通过本实验希望你能:1. 了解对分法、迭代法、牛顿切线法求方程近似根的基本过程;2. 求代数方程(组)的解.二、相关函数(命令)及简介1.abs( ):求绝对值函数.2.diff(f):对独立变量求微分,f 为符号表达式.diff(f, 'a'):对变量a求微分,f 为符号表达式.diff(f, 'a', n):对变量 a 求 n 次微分,f 为符号表达式.例如:syms x tdiff(sin(x^2)*t^6, 't', 6)ans=720*sin(x^2)3.roots([c(1), c(2), …, c(n+1)]):求解多项式的所有根.例如:求解:.p = [1 -6 -72 -27];r = roots(p)r =12.1229-5.7345-0.38844.solve('表达式'):求表达式的解.solve('2*sin(x)=1')ans =1/6*pi5.linsolve(A, b):求线性方程组 A*x=b 的解.例如:A= [9 0; -1 8]; b=[1; 2];linsolve(A, b)ans=[ 1/9][19/72]6.fzero(fun, x0):在x0附近求fun 的解.其中fun为一个定义的函数,用“@函数名”方式进行调用.例如:fzero(@sin, 3)ans=3.14167.subs(f, 'x ', a):将 a 的值赋给符号表达式 f 中的 x,并计算出值.例如:subs('x^2 ', 'x ', 2)ans = 4三、实验内容首先,我们介绍几种与求根有关的方法:1.对分法对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.设在上连续,,即,或,.则根据连续函数的介值定理,在内至少存在一点,使.下面的方法可以求出该根:(1) 令,计算;(2) 若,则是的根,停止计算,输出结果.若,则令,,若,则令,;.……,有、以及相应的.(3) 若 (为预先给定的精度要求),退出计算,输出结果;反之,返回(1),重复(1),(2),(3).以上方法可得到每次缩小一半的区间序列,在中含有方程的根.当区间长很小时,取其中点为根的近似值,显然有以上公式可用于估计对分次数.分析以上过程不难知道,对分法的收敛速度与公比为的等比级数相同.由于,可知大约对分10次,近似根的精度可提高三位小数.对分法的收敛速度较慢,它常用来试探实根的分布区间,或求根的近似值.2. 迭代法1) 迭代法的基本思想:由方程构造一个等价方程从某个近似根出发,令,可得序列,这种方法称为迭代法.若收敛,即,只要连续,有即可知,的极限是的根,也就是的根.当然,若发散,迭代法就失败.以下给出迭代过程收敛的一些判别方法:定义:如果根的某个邻域中,使对任意的,迭代过程,收敛,则称迭代过程在附近局部收敛.定理1:设,在的某个邻域内连续,并且,,则对任何,由迭代决定的序列收敛于.定理2:条件同定理 1,则定理3:已知方程,且(1) 对任意的,有.(2) 对任意的,有,则对任意的,迭代生成的序列收敛于的根,且.以上给出的收敛定理中的条件要严格验证都较困难,实用时常用以下不严格的标准:当根区间较小,且对某一,明显小于1时,则迭代收敛 (参见附录3).2) 迭代法的加速:a) 松弛法:若与同是的近似值,则是两个近似值的加权平均,其中称为权重,现通过确定看能否得到加速.迭代方程是:其中,令,试确定:当时,有,即当,时,可望获得较好的加速效果,于是有松弛法:,松弛法的加速效果是明显的 (见附录4),甚至不收敛的迭代函数经加速后也能获得收敛.b) Altken方法:松弛法要先计算,在使用中有时不方便,为此发展出以下的 Altken 公式:,是它的根,是其近似根.设,,因为,用差商近似代替,有,解出,得由此得出公式;;,这就是Altken 公式,它的加速效果也是十分明显的,它同样可使不收敛的迭代格式获得收敛(见附录5).3. 牛顿(Newton)法(牛顿切线法)1) 牛顿法的基本思想:是非线性方程,一般较难解决,多采用线性化方法.记:是一次多项式,用作为的近似方程.的解为记为,一般地,记即为牛顿法公式.2) 牛顿法的收敛速度:对牛顿法,迭代形式为:注意分子上的,所以当时,,牛顿法至少是二阶收敛的,而在重根附近,牛顿法是线性收敛的.牛顿法的缺点是:(1)对重根收敛很慢;(2)对初值要求较严,要求相当接近真值.因此,常用其他方法确定初值,再用牛顿法提高精度.4. 求方程根(解)的其它方法(1) solve('x^3-3*x+1=0')(2) roots([1 0 -3 1])(3) fzero('x^3-3*x+1', -2)(4) fzero('x^3-3*x+1', 0.5)(5) fzero('x^3-3*x+1', 1.4)(6) linsolve([1, 2, 3; 4, 5, 6; 7, 8, 0], [1, 2, 3]')体会一下,(2)(5) 用了上述 1 3 中的哪一种方法?以下是本实验中的几个具体的实验,详细的程序清单参见附录.具体实验1:对分法先作图观察方程:的实根的分布区间,再利用对分法在这些区间上分别求出根的近似值.输入以下命令,可得的图象:f='x^3-3*x+1';g='0';ezplot(f, [-4, 4]);hold on;ezplot(g, [-4, 4]); %目的是画出直线 y=0,即 x 轴grid on;axis([-4 4 -5 5]);hold off请填写下表:在某区间上求根的近似值的对分法程序参见附录1.具体实验2:普通迭代法采用迭代过程:求方程在 0.5 附近的根,精确到第 4 位小数.构造等价方程:用迭代公式:,用 Matlab 编写的程序参见附录2.请利用上述程序填写下表:分析:将附录2第4行中的分别改为以及,问运行的结果是什么?你能分析得到其中的原因吗?看看下面的“具体实验3”是想向你表达一个什么意思.用 Matlab 编写的程序参见附录3.具体实验3:收敛/发散判断设方程的三个根近似地取,和,这些近似值可以用上面的对分法求得.迭代形式一:收敛 (很可能收敛,下同)不收敛 (很可能不收敛,下同)不收敛迭代形式二:收敛不收敛不收敛迭代形式三:不收敛收敛收敛具体实验4:迭代法的加速1——松弛迭代法,,迭代公式为程序参见附录4.具体实验5:迭代法的加速2——Altken迭代法迭代公式为:,,程序参见附录5.具体实验6:牛顿法用牛顿法计算方程在-2到2之间的三个根.提示:,迭代公式:程序参见附录6 (牛顿法程序).具体实验7:其他方法求下列代数方程(组)的解:(1)命令:solve('x^5-x+1=0')(2)命令:[x, y]=solve('2*x+3*y=0', '4*x^2+3*y=1')(3) 求线性方程组的解,已知,命令:for i=1:5for j=1:5m(i, j)=i+j-1;endendm(5, 5)=0;b=[1:5]'linsolve(m, b)思考:若,或是类似的但阶数更大的稀疏方阵,则应如何得到?四、自己动手1.对分法可以用来求偶重根附近的近似解吗? 为什么?2.对照具体实验2、4、5,你可以得出什么结论?3.选择适当的迭代过程,分别使用:(1)普通迭代法;(2)与之相应的松弛迭代法和Altken 迭代法.求解方程在 1.4 附近的根,精确到4位小数,请注意迭代次数的变化.4.分别用对分法、普通迭代法、松弛迭代法、Altken 迭代法、牛顿切法线等5种方法,求方程的正的近似根,.(建议取.时间许可的话,可进一步考虑的情况.)。
用MATLAB解方程的三个实例1、对于多项式p(x)=x3-6x2-72x-27,求多项式p(x)=0的根,可用多项式求根函数roots(p),其中p为多项式系数向量,即>>p =[1,-6,-72,-27]p =1.00 -6.00 -72.00 -27.00p是多项式的MATLAB描述方法,我们可用poly2str(p,'x')函数,来显示多项式的形式: >>px=poly2str(p,'x')px =x^3 - 6 x^2 - 72 x - 27多项式的根解法如下:>> format rat %以有理数显示>> r=roots(p)r =2170/179-648/113-769/19802、在MATLAB中,求解用符号表达式表示的代数方程可由函数solve实现,其调用格式为:solve(s,v):求解符号表达式s的代数方程,求解变量为v。
例如,求方程(x+2)x=2的解,解法如下:>> x=solve('(x+2)^x=2','x')x =.69829942170241042826920133106081得到符号解,具有缺省精度。
如果需要指定精度的解,则:>> x=vpa(x,3)x =.6983、使用fzero或fsolve函数,可以求解指定位置(如x0)的一个根,格式为:x=fzero(fun,x0)或x=fsolve(fun,x0)。
例如,求方程0.8x+atan(x)- =0在x0=2附近一个根,解法如下:>> fu=@(x)0.8*x+atan(x)-pi;>> x=fzero(fu,2)x =2.4482或>> x=fsolve('0.8*x+atan(x)-pi',2)x =2.4482当然了,对于该方程也可以用第二种方法求解:>> x=solve('0.8*x+atan(x)-pi','x')x =2.4482183943587910343011460497668对于第一个例子,也可以用第三种方法求解:>> F=@(x)x^3-6*x^2-72*x-27F =@(x)x^3-6*x^2-72*x-27>> x=fzero(F,10)x =12.1229对于第二个例子,也可以用第三种方法:>> FUN=@(x)(x+2)^x-2FUN =@(x)(x+2)^x-2>> x=fzero(FUN,1)x =0.6983最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MA TLAB中有两种方法:(1)x=inv(A)*b —采用求逆运算解方程组;(2)x=A\b —采用左除运算解方程组。
实验一方程根的近似计算一、问题求非线性方程的根二、实验目的1、学会使用matlab中内部函数roots、solve、fsolve、fzero求解方程,并用之解决实际问题。
4、熟悉Matlab的编程思路,尤其是函数式M文件的编写方法。
三、预备知识方程求根是初等数学的重要内容之一,也是科学和工程中经常碰到的数值计算问题。
它的一般形式是求方程f(x)=0的根。
如果有x*使得f(x*)=0,则称x*为f(x)=0的根,或函数f(x)的零点。
并非所有的方程都能求出精确解或解析解。
理论上已经证明,用代数方法可以求出不超过3次的代数方程的解析解,但对于次数大于等于5的代数方程,没有代数求根方法,即它的根不能用方程系数的解析式表示。
至于超越方程,通常很难求出其解析解。
不存在解析解的方程就需要结合具体方程(函数)的性质,使用作图法或数值法求出近似解。
而计算机的发展和普及又为这些方法提供了广阔的发展前景,使之成为科学和工程中最实用的方法之一。
下面介绍几种常见的求近似根的方法。
1. 求方程近似解的简单方法1.1 图形方法—放大法求根图形的方法是分析方程根的性态最简洁的方法。
不过,不要总是想得到根的精确值。
这些值虽然粗糙但直观,多少个根,在何范围,一目了然。
并且还可以借助图形局部放大功能,将根定位得更加准确一些。
例1.1 求方程x5+2x2+4=0的所有根及其大致分布范围。
解(1)画出函数f(x)=x5+2x2+4的图形,确定方程的实数根的大致范围。
为此,在matlab命令窗中输入clfezplot x-x,grid onhold onezplot('x^5+2*x^2+4',[-2*pi,2*pi])1-1 函数f(x)=x5+2x2+4的图形clfx=-2*pi:0.1:2*pi;y1=zeros(size(x));y2= x.^5+2*x.^2+4;plot(x,y1,x,y2)grid onaxis tighttitle('x^5+2x^2+4')xlabel('x')从图1-1可见,它有一个实数根,大致分布在-2与2之间。
matlab计算根号算法根号算法是数学中常见的一种求解平方根的方法。
在计算机科学中,根号算法也是常用的数值计算方法之一。
在本文中,我们将介绍如何使用Matlab实现根号算法,并探讨其原理与应用。
我们需要明确根号算法的定义。
根号算法,也称为平方根算法,是求解一个数的平方根的方法。
在数学中,我们使用符号√来表示平方根。
例如,√4=2,表示4的平方根等于2。
在Matlab中,我们可以使用内置的sqrt函数来计算一个数的平方根。
sqrt函数的使用非常简单,只需要将需要求解平方根的数作为参数传入即可。
例如,如果我们想求解16的平方根,可以使用以下代码:```x = sqrt(16);disp(x);```运行上述代码,我们将得到输出结果为4。
这是因为16的平方根等于4。
除了使用内置的sqrt函数外,我们还可以使用迭代法来实现根号算法。
迭代法的基本思想是通过不断逼近的方式,求解一个方程的根。
在根号算法中,我们可以通过迭代法逼近一个数的平方根。
具体而言,我们可以使用以下迭代公式来计算一个数的平方根:```x(n+1) = (x(n) + a / x(n)) / 2```其中,x(n)表示第n次迭代的结果,x(n+1)表示第n+1次迭代的结果,a表示需要求解平方根的数。
现在,我们将使用Matlab实现根号算法的迭代过程。
首先,我们需要设置迭代的初始值,通常可以选择一个合适的数作为初始值。
在这里,我们选择a本身作为初始值。
然后,我们可以使用一个循环来迭代地计算平方根,直到达到预设的精度。
以下是使用Matlab实现根号算法的代码:```a = 16; % 需要求解平方根的数x = a; % 初始值设为a本身delta = 1e-6; % 预设的精度while truex_next = (x + a / x) / 2; % 根号算法的迭代公式if abs(x_next - x) < delta % 判断是否达到预设的精度break;endx = x_next; % 更新迭代结果enddisp(x);```运行上述代码,我们将得到输出结果为4。
数学实验报告实验序号: 日期: 年 月 日班级姓名学号实验名称:求代数方程的近似根 问题背景描述:求代数方程0)(=x f 的根是最常见的数学问题之一,当)(x f 是一次多项式时,称0)(=x f 为线性方程,否则称之为非线性方程.当0)(=x f 是非线性方程时,由于)(x f 的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间],[b a ,或给出某根的近似值0x .实验目的:1. 了解代数方程求根求解的四种方法:对分法、迭代法、牛顿切线法2. 掌握对分法、迭代法、牛顿切线法求方程近似根的基本过程。
实验原理与数学模型:1.对分法对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.设)(x f 在],[b a 上连续,0)()(<⋅b f a f ,即 ()0f a >,()0f b <或()0f a <,()0f b >.则根据连续函数的介值定理,在),(b a 内至少存在一点 ξ,使()0f ξ=.下面的方法可以求出该根:(1) 令02a bx +=,计算0()f x ;(2) 若0()0f x =,则0x 是()0f x =的根,停止计算,输出结果0x x =.若 0()()0f a f x ⋅<,则令1a a =,10b x =,若0()()0f a f x ⋅>,则令10a x =,1b b =;1112a b x +=. ……,有k a 、k b 以及相应的2k kk a b x +=. (3) 若()k f x ε≤ (ε为预先给定的精度要求),退出计算,输出结果2k kk a b x +=; 反之,返回(1),重复(1),(2),(3).以上方法可得到每次缩小一半的区间序列{[,]}k k a b ,在(,)k k a b 中含有方程的根.当区间长k k b a -很小时,取其中点2k kk a b x +=为根的近似值,显然有 1111111()()()2222k k k k k k x b a b a b a ξ--+-≤-=⨯⨯-==-以上公式可用于估计对分次数k .2. 迭代法1) 迭代法的基本思想:由方程()0f x =构造一个等价方程()x x φ=从某个近似根0x 出发,令1()k k x x φ+=, ,2,1,0=k可得序列{}k x ,这种方法称为迭代法.若 {}k x 收敛,即*lim k k x x →∞=,只要()x φ连续,有1lim lim ()(lim )k k k k k k x x x φφ+→∞→∞→∞==即可知,{}k x 的极限*x 是()x x φ=的根,也就是()0f x =的根.当然,若k x 发散,迭代法就失败. 迭代过程1()k k x x φ+=收敛的常用判别标准:当根区间[,]a b 较小,且对某一0[,]x a b ∈,()'x φ明显小于1时,则迭代收敛2) 迭代法的加速:a) 松弛法:若()x φ与k x 同是*x 的近似值,则1(1)()k k k k k x x x ωωφ+=-+是两个近似值的加权平均,其中k ω称为权重,现通过确定k ω看能否得到加速.迭代方程是:()x x ψ←其中()(1)()x x x ψωωφ=-+,令'()1'()0x x ψωωφ=-+=,试确定ω:当'()1x φ≠时,有11'()x ωφ=-,即当11'()k k x ωφ=-,'()11'()k k k x x φωφ--=-时,可望获得较好的加速效果,于是有松弛法:1(1)()k k k k k x x x ωωφ+=-+,11'()k k x ωφ=-b) Altken 方法:**()x x φ=,*x 是它的根,0x 是其近似根. 设10()x x φ=,21()x x φ=,因为****222121[][()()]()()x x x x x x x x 'x x φφφξ=+-=+-=+-, 用差商10211010()()x x x x x x x x φφ--=--近似代替()'φξ,有 **212110()x x x x x x x x -≈+-- , 解出*x ,得**()x x φ=2*212210()2x x x x x x x -≈--+ 由此得出公式(1)()k k x x φ= ; (2)(1)()k k x x φ=;(2)(1)2(2)1(2)(1)()2k k k kk k kx x x xx x x +-==-+, ,2,1,0=k 这就是Altken 公式。