《自动控制原理》第二版课后习题答案
- 格式:docx
- 大小:7.89 MB
- 文档页数:186
自动控制原理第二版课后答案孟华【篇一:自动控制原理_孟华_习题答案】t>第二章2.1 试分别写出图2.68中各无源电路的输入ur(t)与输出uc(t)之间的微分方程。
图2.68 习题2.1图解:(a)ur?ucu?r?u?c)?i2,i1?i2?c?i1,c(ur1r2,r1r2rrr2?c?uc?12cu?r?cuurr1?r2r1?r2r1?r2(b)?r?u?c)?i1,c1(uur?u1?1,uc?i1r2?u1, ?i2,i1?i2?c2ur1??c?(r1c1?r1c2?r2c1)u?c?uc?r1r2c1c2u??r?(r1c1?r2c1)u?r?u r r1r2c1c2u(c)uur?uc?i1,c1(ur?u1)?i2,i1?i2?1r1r2,uc?1i1dt?u1, ?c2??c?(rc????r1r2c1c2u12?r2c2?r2c1)uc?uc?r1r2c1c2ur?(r2c2?r2c1)ur?ur2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中xr(t)为输入,xc(t)为输出,均是位移量。
(a)(b)图2.69 习题2.2图(a)1ur?uc?r?u?c)?i2,i1?i2?i,uc??i1,c1(uidt?ir2,r1c2???c?(r1c1?r1c2?r2c2)u?c?uc?r1r2c1c2u??r?(r1c1?r2c2)u?r?u r r1r2c1c2u(b)?c?x?1)?k2x1,b1(x?r?x?c)?k1(xr?xc)?b2(x?c?x?1), b2(xb1b2bbbbbbb??c?(1?2?2)x?c?xc?12??r?(1?2)x?r?xrxxk1k2k1k2k1k1k2k1k22.3 试分别求出图2.70中各有源电路的输入ur(t)与输出uc(t)之间的微分方程。
(a) (b)(c)图2.70 习题2.3图解:(a)uur?r??c?cur1r2,uc?r???r2cur2ur r1(b)uurr?c,r2cu?c?uc??2ur ??c?cur1r2r1uc??ur1u?c??r2cu?r?ur r2??rdt,r1cur1cr1(c)2.4 某弹簧的力-位移特性曲线如图2.71所示。
自动控制原理第二版课后答案1. 什么是自动控制原理?自动控制原理是一门研究如何设计、分析和实现自动控制系统的学科。
它涉及到信号处理、系统建模、控制算法设计等多个领域,是现代工程技术中的重要组成部分。
自动控制系统广泛应用于工业生产、交通运输、航空航天等领域,对提高生产效率、降低能耗、改善产品质量等方面起到了重要作用。
2. 为什么需要学习自动控制原理?学习自动控制原理可以帮助我们理解和掌握如何设计和优化控制系统,从而更好地解决实际工程问题。
掌握自动控制原理知识可以提高工程师的工作效率,同时也为未来的科研和创新打下坚实的基础。
3. 自动控制原理的基本概念。
自动控制系统由输入、输出、控制器和被控对象组成。
输入是系统的控制信号,输出是系统的反馈信号,控制器根据输入信号和输出信号进行计算,然后控制被控对象的行为。
自动控制系统的目标是使系统的输出信号尽可能接近期望值,从而实现对系统的精确控制。
4. 自动控制原理的数学模型。
自动控制系统可以用数学模型来描述,常见的数学模型包括微分方程、差分方程、状态空间方程等。
通过建立系统的数学模型,可以对系统进行分析和设计,从而实现对系统的控制。
5. 自动控制原理的控制算法。
控制算法是自动控制系统的核心部分,常见的控制算法包括比例控制、积分控制、微分控制、模糊控制、神经网络控制等。
不同的控制算法适用于不同的系统,可以根据实际情况选择合适的控制算法来实现对系统的控制。
6. 自动控制原理的应用。
自动控制原理在工业生产、交通运输、航空航天等领域有着广泛的应用。
例如,在工业生产中,自动控制系统可以实现对生产过程的精确控制,提高生产效率和产品质量;在交通运输领域,自动控制系统可以实现对交通信号、车辆行驶等方面的控制,提高交通运输效率和安全性。
7. 自动控制原理的发展趋势。
随着科学技术的不断发展,自动控制原理也在不断地发展和完善。
未来,自动控制系统将更加智能化、自适应化,能够更好地适应复杂多变的环境,实现对系统的更加精确和高效的控制。
自动控制原理及其应用第二版课后答案【篇一:《自动控制原理》黄坚课后习题答案】ss=txt>uo-u+o(a)解:i1=i-i2u1=ui-uouuu-ui=i1==211dud(u-u)i2=c=c(b)解:(u-u)i=i1+i2i=udui1=i2=c2duu1-uo=21u-uud(u-u)-c=12dudur2(ui-uo )=r1u0-cr1r2(-)duducr1r2+r1uo+r2u0=cr1r2+r2uidud2uuuduu--21112=2+cud2udu+(c+=12+(1+2)uo12duu+c2duo+22-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4t(2) f(t)=t3+e4t434t解:l[t+e](3) f(t)=tneat解:l[tneat]=(4) f(t)=(t-1)2e2t解:l[(t-1)2e2t]=e-(s-2)2-3求下列函数的拉氏反变换。
(1) f(s)=aa解:a1=(s+2)=-1a2=2 -f(t)=2e-3t-e-2t(2) f(s)=aaa解:a1=(s+1)=-1a2[=2a3s=-2=-2f(t)=-2e-2t-te-t+2e-t(3) f(s)=2as+aa解:f(s)(s2=a1s+a2j=a1s+aj-2-5j+1=ja1+a2-5j-1=-a1+ja2a1=1a2=-5a3=f(s)s=1++f(t)=1+cost-5sint(4) f(s)=解:=a+a+a+aa1a3a4a2ad[2]s=-1f(t)=e-t-e-t++e-3t(2-4)求解下列微分方程。
a2=5 a3=-4y(t)=1+5e-2t-4e-3t并求传递函数。
2-5试画题图所示电路的动态结构图,c+sc)r2r+rrscu(s)==c1+(+sc)r212121(2)cl1=-r2 /lsl2=-/lcs2l3=-1/scr1l1l3=r2/lcr1s2c112122-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求g(s)。
自动控制原理_胡寿松_第二版_答案全解第二章控制系统数学模型练习及参考答案自动控制原理胡守松第二版课后解答2-2由牛顿第二运动定律,不管重力如何,都可以得到组织上述公式的拉普拉斯变换是通过注意运动从静止开始,即初始条件都为零而获得的所以传递函数是(2)取上弹簧和阻尼器之间的辅助点a,将点a的位移设定为x,方向向下;在作品的下半部分。
导出点作为辅助点B。
根据弹簧力和阻尼力平衡的原则,从点A和点B可分别列出下列原始方程:通过消除中间变量x,可以得到系统的微分方程。
对上述公式进行拉普拉斯变换,并考虑零的初始条件,系统传递函数为(3)以引出点为辅助点,根据力平衡原理,可列出以下原始方程:按项移位排序的系统微分方程对上述公式进行拉普拉斯变换,注意运动从静止开始,即那么系统传递函数是2-3(b)取k1和f1之间的辅助点A,设定点A的位移为X,方向向下;根据力平衡原理,可以列出以下原始方程:因此2-6解决方案:2-7解决方案:2-8解决方案:2-9解决方案:2-10解决方案:系统结构图如下:系统的传递函数是:2-11解决方案:(a)(b)(c)(d)(e)(f)2-12解决方案:第三章线性系统的时域分析练习和参考答案3-1解决方案:3-2溶液:3-3溶液:3-4解决方案:3-5解决方案:3-6解决方案:3-7解决方案:3-8解决方案:3-9解决方案:勒鲁斯的表格如下: 系统不稳定性3-10解决方案:(略) 3-11解决方案:系统的特征方程为: 简化;勒鲁斯的表格如下:。
自动控制原理孟华第二版课后答案【篇一:自动控制原理_孟华_习题答案大连理工】t>第一章(略)第二章2.1 试分别写出图2.68中各无源电路的输入ur(t)与输出uc(t)之间的微分方程。
图2.68 习题2.1图解:(a)ur?ucurrrrr2?c?uc?12cu?r??r?u?c)?i2,i1?i2?c,12cu?i1,c(uurr1r2r1?r2r1?r2r1?r2(b)?r?u?c)?i1,c1(uur?u1?1,uc?i1r2?u1, ?i2,i1?i2?c2ur1??c?(r1c1?r1c2?r2c1)u?c?uc?r1r2c1c2u??r?(r1c1?r2c1)u?r?u r r1r2c1c2u(c)u1ur?uc?i1,c1(ur?u1)?i2,i1?i2?1,uc?i1dt?u1, r1r2c2???c?(rc????r1r2c1c2u12?r2c2?r2c1)uc?uc?r1r2c1c2ur?(r2c2?r2c1)ur?ur2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中xr(t)为输入,xc(t)为输出,均是位移量。
(a)(b)图2.69 习题2.2图解:(a)1ur?uc?r?u?c)?i2,i1?i2?i,uc??i1,c1(uidt?ir2,r1c2???c?(r1c1?r1c2?r2c2)u?c?uc?r1r2c1c2u??r?(r1c1?r2c2)u?r?u r r1r2c1c2u(b)?c?x?1)?k2x1,b1(x?r?x?c)?k1(xr?xc)?b2(x?c?x?1), b2(x b1b2bbbbbbb??c?(1?2?2)x?c?xc?12??r?(1?2)x?r?xrxxk1k2k1k2k1k1k2k1k22.3 试分别求出图2.70中各有源电路的输入ur(t)与输出uc(t)之间的微分方程。