自动控制原理C作业第二章答案
- 格式:doc
- 大小:1.05 MB
- 文档页数:20
第2章 控制系统的数学模型习题及解答2-1 已知质量-弹簧系统如题2-1图所示,图中标明了质量和弹簧的弹性系数。
当外力F (t )作用时,系统产生运动,如果在不计摩擦的情况下,以质量m 2的位移y (t )为输出,外力F (t )为输入,试列写系统的运动方程。
解: 设 质量m 1的位移量为x (t ),根据牛顿第二定律有y k y x k dt yd m 21222-)(−= ①)(1221y x k F dtxd m −−= ②①式可以写作y k k x k dtyd m )(211222+−= ③由①式也可以得到y k dtyd m y x k 22221)(+=− ④③式两端同时求二阶导数,可得2221221442)(dty d k k dt x d k dt yd m +−= ⑤将②、③式代入⑤式中,整理可得F m k y m k k dty d m k m k m m dt y d m 1112122122121442)(=−++++ 2-2 求题2-2图中由质量-弹簧-阻尼器组成的机械系统,建立系统的运动方程。
其中,x (t )为基底相对于惯性空间的位移,y (t )为质量相对于惯性空间的位移。
z (t )= y (t )- x (t )为基底和质量之间的相对位移,z (t )由记录得到, x (t )和z (t )分别为输入量和输出量。
解:应用牛顿第二定律可得dtt dz f kz dt y d m )(22−−= 将z (t )= y (t )- x (t )代入上式,整理可得2222dtx d m kz dt dz f dt z d m −=++题2-2图题2-1图解:(a )引入中间变量u c (t)表示电容器两端的电压。
根据基尔霍夫电流定律有o c c u R u R dt du C2111=+ 根据基尔霍夫电压定律有o i c u u u −=联立消去中间变量,可得描述输入量u i (t )和输出量u o (t )之间关系的微分方程为i i o o u R dt du C u R R R R dt du C121211+=++ (b )引入回路电流i (t )和电容器两端的电压u c (t)作为中间变量,根据基尔霍夫电压定律有i o u u i R =+1 另有电容元件的元件约束关系方程dtdu Ci c =和i R u u o c 2−=联立求解,消去中间变量可得i i o o u R dt du C u R R R R dt du C121211+=++(c )设电容器C 2两端的电压为u c 2(t),根据基尔霍夫电流定律有dtduC u u R dt u u d C c o i o i 2211)(1)(=−+− ①求导可得22221221)(1)(dtu d C dt u u d R dt u u d C c o i o i =−+− ② 另有输出支路电压方程o c c u u dtdu C R =+2222 等式两边求导有dtdu dt du dt u d C R oc c =+222222 ③将①、②代入③式,整理可得i ii ooo u C R dt du C R C R C R dt u d C R u C R dt du C R C R C R C R dt u d C R 2121221121221212122112121122+++=++++2-4 试求题2-4图所示有源RC 电路的微分方程,其中u i (t )为输入量,u o (t )为输出量。
第2章习题2.1 列写如图题2.1所示电路中以电源电压U 作为输入,电容1C ,2C 上的电压1c U 和2c U 作为输出的状态空间表达式。
图题2.1答案:X L R LL M C R M C M C R M C C X ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−+−=211321321100)(& X y ⎥⎦⎤⎢⎣⎡=010001其中)(3221311C C C C C C R M ++=2.2 如图题2.2所示为RLC 网络,有电压源s e 及电流源s i 两个输入量。
设选取状态变量23121,,C C L u x u x i x ===;输出量为y 。
建立该网络动态方程,并写出其向量-矩阵形式(提示:先列写节点a ,b 的电流方程及回路电势平衡方程)。
图题2.2*答案:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s e i C L L R C C L L L RR 0001100100111x x x 12121321&&&U 3+-se[]111−−−=R y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +[]⎥⎦⎤⎢⎣⎡s s e i R 11 2.3 列写图题2.3所示RLC 网络的微分方程。
其中,r u 为输入变量,c u 为输出变量图题2.3答案:r c cc u u dt du RC dtu d LC =++22 2.4 列写图题2.4所示RLC 网络的微分方程,其中r u 为输入变量,c u 为输出变量。
图题2.4答案:r c cc uu dt du R L dtu d LC =++22 2.5 图题2.5所示为一弹簧—质量—阻尼器系统,列写外力)(t F 与质量块位移)(t y 之间)(t图题2.5答案:)()()()(22t f t ky dt t dy f dtt y d m =++ 2.6 列写图题2.6所示电路的微分方程,并确定系统的传递函数,其中r u 为输入变量,cu 为输出变量。
第二章控制系统的数学模型2.1RC无源网络电路图如图2-1所示,试采用复数阻抗法画出系统结构图,并求传递函数U c(s)/U r(s)。
图2-1解:在线性电路的计算中,引入了复阻抗的概念,则电压、电流、复阻抗之间的关系,满足广义的欧姆定律。
即:)()()(sZsIsU=如果二端元件就是电阻R、电容C或电感L,则复阻抗Z(s)分别就是R、1/C s或L s。
(1)用复阻抗写电路方程式:sCSISVRSUSUSIsCSISISURSUSUSIccccCr222221212111111)()(1)]()([)(1)]()([)(1)]()([)(⋅=-=⋅-=⋅-=(2)将以上四式用方框图表示,并相互连接即得RC网络结构图,见图2-1(a)。
2-1(a)。
(3)用梅逊公式直接由图2-1(a)写出传递函数U c(s)/U r(s) 。
∆∆=∑KGG K独立回路有三个:SCRSCRL1111111-=⋅-=SCRSCRL22222111-=⋅-=回路相互不接触的情况只有L 1与L 2两个回路。
则2221121121S C R C R L L L == 由上式可写出特征式为:222111222112132111111)(1S C R C R S C R S C R S C R L L L L L ++++=+++-=∆通向前路只有一条221212*********SC C R R S C R S C R G =⋅⋅⋅=由于G 1与所有回路L 1,L 2, L 3都有公共支路,属于相互有接触,则余子式为Δ1=1代入梅逊公式得传递函数1)(111111121221122121222111222112221111++++=++++=∆∆=s C R C R C R s C C R R s C R C R s C R s C R s C R s C R C R G G 2-2 已知系统结构图如图2-2所示,试用化简法求传递函数C (s )/R (s )。
习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。
),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。
习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。
图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。
2-1(1)a.微分方程(2)a.线性定常2-2.方框、信号线、综合点、引出点2-3.变换变量关系保持不变。
2-4. 222222121)(nn n s s s T s T s G ωζωωζ++=++= 2-5. 输入信号)t (r 和输出信号)t (c 及其各阶导数在0t =时的值均为零。
2-6解:取分离体分析受力如图3-1-3所示。
依据牛顿定律可得()()()22)(dt t y d m a m t f t f t f K B =⋅=-- (1) 式中 K f ── 弹簧力;()t f B ── 阻尼力。
弹簧力与物体位移成正比,即)(t y K f K ⋅= (2)式中 K ── 弹簧刚度阻尼力与运动速度成正比,与运动方向相反,即()dtt dy B f B = (3) 式中 B ── 阻尼系数将式(2)和(3)代入(1)中,可得该系统的微分方程式:()()()()t f t Ky dt t dy B dt t y d m =++22 (4) 若令 K B T B =──时间常数;Km T m =──时间常数。
则(4)式可写成: ()()()()()t f K t f K t y dt t dy T dt t y d T a B m==++1222 式中 KK a 1=2-7. 解:(a );;;(b )2-8.543432143221432)1()()()(K K K K K K K s K K K s K s K K K s R s C +++++=τττ 2-9. (a ) 2423241321121413211)()(H G H G G G G G G G H G G G G G G G s R s C ++++++= (b ) HG G G G G G s R s C 2132211)()(++= 2-10. 22121211)()(H G H G G G G s R s C -+= 221212121)()(H G H G G G G G G s N s C c -+-=2-11.4232121213211)()(G H G G H G H G G G G G s R s C ++++= 2-12.(a ) bhdifjdifj bhfj bhdi bcdefk fj di bh abcdefg s R s C -++++++-=)()(1)()( (b ) 3431324321343136543211)1()()(H G G H G H G G G G H G G H G G G G G G G s R s C ++++++= 2-13解:前向通道:3211G G G P =, 412G G P =; 回路增益:1211H G G L -=, 2322H G G L -=,243H G L -=, 3214G G G L -=,415G G L -=;特征式:41321242321211G G G G G H G H G G H G G +++++=∆,11=∆,12=∆; 4132124232121413211)(G G G G G H G H G G H G G G G G G G s ++++++=Φ 2-14 解:前向通道:3211G G G P =,342G G P =;回路增益:213211H H G G G L -=,112H G L -=,233H G L -=,互不接触回路L2和L3特征式:2131112321321H H G G H G H G H H G G G 1++++=∆,11=∆,112H G 1+=∆;21311123213211143321H H G G H G H G H H G G G 1)H G 1(G G G G G )s (++++++=Φ2-15解:先将系统结构图化简为如下形式回路增益:33211H G G G L -=,222H G L -=,113H G L -=,特征式:112233211H G H G H G G G +++=∆ C(s)/R(s):前向通道:3211G G G P =,11=∆, M(s)/N(s): 前向通道:22G P =,12=∆ E(s)/R(s): 前向通道:13=P ,112231H G H G ++=∆ 112233213211H G H G H G G G G G G )s (C R +++=Φ 1122332121H G H G H G G G G )s (N M +++=Φ 11223321112211H G H G H G G G H G H G )s (ER +++++=Φ。
⾃动控制原理第⼆章课后习题答案(免费)⾃动控制原理第⼆章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换(1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。
解:211(1)()(1)()0(0.8)(0.1)lim lim lim t z z z z f t z E z z z →∞→→-=-==--2-3* 已知()(())E z L e t =,试证明下列关系成⽴:(1)[()][];n z L a e t E a=证明:()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。
证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。
自动控制原理课后习题答案第二章2.1 试分别写出图2.68中各无源电路的输入u r(t)与输出u c(t)之间的微分方程。
图2.68 习题2.1图解:(a)11r cu uiR-=,2()r cC u u i-=&&,122cui iR+=,12122121212c c r rR R R R RCu u Cu uR R R R R R+=++++&&(b)11()r cC u u i-=&&,121ru uiR-=,1221i i C u+=&,121cu i R u=+,121211122112121121()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&(c)11r cu uiR-=,112()rC u u i-=,1122ui iR+=,1121cu i dt uC=+⎰,121212222112122221()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中X r(t)为输入,X c(t)为输出,均是位移量。
(a) (b)图2.69 习题2.2图解:(a)11r cu uiR-=,12()r cC u u i-=&&,12i i i+=,221cu idt iRC=+⎰,121211122212121122()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&(b)2121()cB x x K x-=&&,1121()()()r c r c cB x x K x x B x x-+-=-&&&&,121221212121211212()()c c c r r rB B B B B B B B Bx x x x x xK K K K K K K K K++++=+++&&&&&&2.3 试分别求出图2.70中各有源电路的输入u r (t )与输出u c (t )之间的微分方程。
第 二 章2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。
分析 首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。
对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。
证明:(a)根据复阻抗概念可得:2221212112212211212112212122111()1()111oiR u C s R R C C s R C R C R C s R u R R C C s R C R C R C C sR C s R C s+++++==+++++++即220012121122121212112222()()i i o id u du d u duR R C C R C R C R C u R R C C R C R C u dt dt dt dt++++=+++取A 、B 两点进行受力分析,可得:o 112()()()i o i o dx dx dx dx f K x x f dt dt dt dt -+-=- o 22()dx dxf K x dt dt -= 整理可得:2212111221121212211222()()o o i i o id x dx d x dx f f f K f K f K K K x f f f K f K K K x dt dt dt dt ++++=+++经比较可以看出,电网络(a )和机械系统(b )两者参数的相似关系为1112221211,,,K f R K f R C C ::::2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1) ;)()(2t t x t x =+&(2))。