自动控制原理C作业(第二章)答案
- 格式:doc
- 大小:1.07 MB
- 文档页数:22
第2章习题2.1 列写如图题2.1所示电路中以电源电压U 作为输入,电容1C ,2C 上的电压1c U 和2c U 作为输出的状态空间表达式。
图题2.1答案:X L R LL M C R M C M C R M C C X ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−+−=211321321100)(& X y ⎥⎦⎤⎢⎣⎡=010001其中)(3221311C C C C C C R M ++=2.2 如图题2.2所示为RLC 网络,有电压源s e 及电流源s i 两个输入量。
设选取状态变量23121,,C C L u x u x i x ===;输出量为y 。
建立该网络动态方程,并写出其向量-矩阵形式(提示:先列写节点a ,b 的电流方程及回路电势平衡方程)。
图题2.2*答案:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s e i C L L R C C L L L RR 0001100100111x x x 12121321&&&U 3+-se[]111−−−=R y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +[]⎥⎦⎤⎢⎣⎡s s e i R 11 2.3 列写图题2.3所示RLC 网络的微分方程。
其中,r u 为输入变量,c u 为输出变量图题2.3答案:r c cc u u dt du RC dtu d LC =++22 2.4 列写图题2.4所示RLC 网络的微分方程,其中r u 为输入变量,c u 为输出变量。
图题2.4答案:r c cc uu dt du R L dtu d LC =++22 2.5 图题2.5所示为一弹簧—质量—阻尼器系统,列写外力)(t F 与质量块位移)(t y 之间)(t图题2.5答案:)()()()(22t f t ky dt t dy f dtt y d m =++ 2.6 列写图题2.6所示电路的微分方程,并确定系统的传递函数,其中r u 为输入变量,cu 为输出变量。
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。
),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。
习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。
图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。
自动控制原理作业题(后附答案)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII自动控制原理作业题第一章基本概念一、简答题1 简述自动控制的基本概念2 简述自动控制系统的基本组成3 简述控制系统的基本控制过程4 简述自动控制系统的基本分类5 试比较开环控制和闭环控制的特点6 简述自动控制系统的性能评价指标二、分析计算题1 液位自动控制系统如图所示。
试分析该系统工作原理,画出系统原理框图,指出被控对象、被控参量和控制量2 发动机电压调节系统如图所示,试分析其工作原理,画出系统原理框图,指出其特点。
3液面控制系统如图所示。
试分析该系统的工作原理,指出系统中的干扰量、被控制量及被控制对象,并画出系统的方框图。
4控制系统如图所示。
简述该系统的工作原理,说明该系统的给定值、被控制量和干扰量,并画出该系统的方块图。
图1-7发电机-电动机调速系统操纵电位计发电机伺服电机减速器负载Θr给定值Ur 前置放大器功放执行元件被控量Wm这是一个开环控制的例子+E-EUr操纵电位计R1R2R3R4放大器直流发电机伺服电机Wd Wm发电机-电动机调速系统减速器负载5火炮随动控制系统如图所示。
简述该系统的工作原理,并画出该系统的原理框图。
第二章 线性控制系统的数学模型一、简答题1 简述建立控制系统数学模型的方法及其数学表示形式2 简述建立微分方程的步骤3 简述传递函数的基本概念及其特点4 给出组成控制系统典型基本环节二、分析计算题1 有源电网络如图所示,输入量为)(1t u ,输出量为)(2t u ,试确定该电网络的传递函数2 电枢控制式直流电动机原理图如图所示,输入量为)(1t e ,输出量为)(t o θ,试确定其微分方程。
图中,电动机电枢输入电压;电动机输出转角;电枢绕组的电阻;电枢绕组的电感;流过电枢绕组的电流;电动机感应电势;电动机转矩;电动机及负载这和到电动机轴上的转动惯量;电动机及负载这和到电动机轴上的粘性摩擦系数。
⾃动控制原理第⼆章课后习题答案(免费)⾃动控制原理第⼆章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换(1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。
解:211(1)()(1)()0(0.8)(0.1)lim lim lim t z z z z f t z E z z z →∞→→-=-==--2-3* 已知()(())E z L e t =,试证明下列关系成⽴:(1)[()][];n z L a e t E a=证明:()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。
证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。
第二章控制系统的数学模型2.1RC无源网络电路图如图2-1所示,试采用复数阻抗法画出系统结构图,并求传递函数U c(s)/U r(s)。
图2-1解:在线性电路的计算中,引入了复阻抗的概念,则电压、电流、复阻抗之间的关系,满足广义的欧姆定律。
即:)()()(sZsIsU=如果二端元件是电阻R、电容C或电感L,则复阻抗Z(s)分别是R、1/C s或L s。
(1)用复阻抗写电路方程式:sCSISVRSUSUSIsCSISISURSUSUSIccccCr222221212111111)()(1)]()([)(1)]()([)(1)]()([)(⋅=-=⋅-=⋅-=(2)将以上四式用方框图表示,并相互连接即得RC网络结构图,见图2-1(a)。
2-1(a)。
(3)用梅逊公式直接由图2-1(a)写出传递函数U c(s)/U r(s) 。
∆∆=∑KGG K独立回路有三个:SC R S C R L 1111111-=⋅-=SC R S C R L 22222111-=⋅-=回路相互不接触的情况只有L 1和L 2两个回路。
则2221121121S C R C R L L L == 由上式可写出特征式为:222111222112132111111)(1S C R C R S C R S C R S C R L L L L L ++++=+++-=∆通向前路只有一条221212*********SC C R R S C R S C R G =⋅⋅⋅=由于G 1与所有回路L 1,L 2, L 3都有公共支路,属于相互有接触,则余子式为Δ1=1代入梅逊公式得传递函数1)(111111121221122121222111222112221111++++=++++=∆∆=s C R C R C R s C C R R s C R C R s C R s C R s C R s C R C R G G2-2 已知系统结构图如图2-2所示,试用化简法求传递函数C (s )/R (s )。
图2-2解:(1)首先将含有G 2的前向通路上的分支点前移,移到下面的回环之外。
如图2-2(a )所示。
(2)将反馈环和并连部分用代数方法化简,得图2-2(b )。
SC R R S C L 12213111-=⋅-=(3)最后将两个方框串联相乘得图2-2(c )。
图2-2 系统结构图的简化2.3化简动态结构图,求C(s)/R(s)图2-3解: 单独回路1个,即3211G G G L -=两个互不接触的回路没有 于是,得特征式为3211 1G G G L a +=-=∆∑从输入R 到输出C 的前向通路共有2条,其前向通路传递函数以及余因子式分别为211G G P = 11=∆422G G P = 12=∆因此,传递函数为∆∆+∆=2211)()(P P s R s C 32124121G G G G G G G ++=2.4 用梅森公式求系统传递函数。
图2-4解: 单独回路5个,即11G L -=212G G L =23G L -=214G G L -=215G G L -=两个互不接触的回路没有于是,得特征式为21211 1G G G G L a+++=-=∆∑从输入R 到输出C 的前向通路共有4条,其前向通路总增益以及余因子式分别为11G P = 11=∆ 22G P = 12=∆ 213G G P = 13=∆214G G P -= 14=∆因此,传递函数为∆∆+∆+∆+∆=44332211)()(P P P Ps R s C 2121211G G G G G G ++++=2-5 试简化图2-5中的系统结构图,并求传递函数C(s)/R(s )和C(s)/N(s)。
图2-5解: 仅考虑输入R (S )作用系统时,单独回路2个,即211G G L -=1212H G G L -=两个互不接触的回路没有,于是,得特征式为121211 1H G G G G L a++=-=∆∑从输入R 到输出C 的前向通路共有1条,其前向通路总增益以及余因子式分别为211G G P = 11=∆因此,传递函数为∆∆=11)()(P s R s C 12121211H G G G G G G ++=仅考虑输入N (S )作用系统时,单独回路2个,即211G G L -=1212H G G L -=两个互不接触的回路没有,于是,得特征式为121211 1H G G G G L a++=-=∆∑从输入N 到输出C 的前向通路共有2条,其前向通路总增益以及余因子式分别为11-=P 12111H G G +=∆ 322G G P = 12=∆因此,传递函数为∆∆+∆=2211)()(P P s N s C2-6用梅逊增益公式求传递函数C(s)/R(s)和E(s)/R(s)。
图2-6解:C(s)/R(s):单独回路3个,即111H G L -=232H G L -=213213H H G G G L -=1L 2L 两个互不接触的回路,于是,得特征式为21312132123111 1H H G G H H G G G H G H G L L L cb a ++++=+-=∆∑∑从输入R 到输出C 的前向通路共有1条,其前向通路总增益以及余因子式分别为3211G G G P = 11=∆432G G P = +=∆1211H G因此,传递函数为∆∆+∆=2211)()(P P s R s C 213121321231111433211)1(H H G G H H G G G H G H G H G G G G G G ++++++=E(s)/R(s):单独回路3个,即111H G L -=232H G L -=213213H H G G G L -=1L 2L 两个互不接触的回路,于是,得特征式为21312132123111 1H H G G H H G G G H G H G L L L cb a ++++=+-=∆∑∑12121322111H G G G G G G H G G ++-+-=从输入R 到输出E 的前向通路共有2条,其前向通路总增益以及余因子式分别为11=P 2311H G +=∆21432H H G G P -= 12=∆因此,传递函数为∆∆+∆=2211)()(P P s R s E213121321231121432311H H G G H H G G G H G H G H H G G H G ++++-+=第三章 线性系统的时域分析法3-1 设二阶控制系统的单位阶跃响应曲线如图3-1所示。
试确定系统的传递函数。
图3-1 二阶控制系统的单位阶跃响应解 在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
系统模型为22223)(nn ns s s ωξωωφ++=然后由响应的%p σ、p t 及相应公式,即可换算出ξ、n ω。
%33334)()()(%=-=∞∞-=c c t c p p σ 1.0=p t (s )由公式得%33%21/==--ξπξσep 34 0.11.012=-=ξωπn p t换算求解得: 33.0=ξ、 2.33=n ω110222330623)(2222++=++=s s s s s n n n n ωξωωφ3-2 设系统如图3-2所示。
如果要求系统的超调量等于%15,峰值时间等于0.8s ,试确定增益K 1和速度反馈系数K t 。
同时,确定在此K 1和K t 数值下系统的延迟时间、上升时间和调节时间。
图3-2解 由图示得闭环特征方程为0)1(112=+++K s K K s t即21n K ω=,nnt t K ωωξ212+=由已知条件8.0115.0%21/2=-===--tn p p t e t tξωπσξπξ解得1588.4,517.0-==s n t ωξ于是05.211=K 178.0211==-K K nt t ωξR (s )C (s )1+K t sK/s(s+1)s t nt t d 297.02.06.012=++=ωξξs t tn t tn r 538.01arccos 122=--=--=ξωξπξωβπs t nt s 476.15.3==ωξ3-3 已知系统特征方程式为0516188234=++++s s s s 试用劳斯判据判断系统的稳定情况。
解 劳斯表为4s 1 18 5 3s 8 16 0 2s168161188=⨯-⨯ 580158=⨯-⨯1s 5.1316581616=⨯-⨯ 00s 55.1301655.13=⨯-⨯由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。
3-4 已知系统特征方程为053222345=+++++s s s s s 试判断系统稳定性。
解 本例是应用劳斯判据判断系统稳定性的一种特殊情况。
如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
劳斯行列式为5s 1 2 3 4s 1 2 5 3s 0≈ε 2-2sεε22+ 51s 225442+---εεε0s 5由劳斯行列表可见,第三行第一列系数为零,可用一个很小的正数ε来代替;第四行第一列系数为(2ε+2/ε,当ε趋于零时为正数;第五行第一列系数为(-4ε-4-5ε2)/(2ε+2),当ε趋于零时为2-。
由于第一列变号两次,故有两个根在右半s 平面,所以系统是不稳定的。
3.5解;在求解系统的稳态误差前必须判定系统是否稳定;系统特征方程为05055.11.023=+++s s s 由劳斯判据判断劳斯行列式为3s 1.0 5 2s 5.1 50 1s35 0s 50由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。
)12.0)(11.0(10)5)(11.0(50)(++=++=s s s s s s s G 可知v=1,K=10I ∞=∞++=+++= 型系统,01k k k k e a v pss βγβα当 ,当第五章 线性系统的频域分析法5.1已知系统的开环传函)12.0)(12(10)()(++=s s s s H s G ,用奈氏判据(画出奈氏曲线)判别闭环系统的稳定性。
解:(1) 确定起点和终点1,2)(0=⋅-=∠→νπνωωνj k 初始相角为,故初始相角为-90°, ∞→→0)(ωνωj k 模值为终点: 0)(=∞→-ωωm n j k 模值为,0027090)()(-=⋅--=∠∞→-m n j kmn ωω终止相角为 (2) 求幅相曲线与负实轴的交点)4.01(2.210)(22ωωωω-+-=j j G ,P=0,N-=1, N+=0,R=2(N+-N-)=-2,Z=P-2N=2 由奈氏判据知,闭环系统是不稳定的。