2017年秋季新版北师大版七年级数学上学期5.1、认识一元一次方程素材6
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第2课时)》说课稿一. 教材分析北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第2课时)》这一节的内容,是在学生已经掌握了代数基础知识的基础上,进一步引导学生认识一元一次方程,并学会解一元一次方程。
本节课的内容对于学生来说,既有挑战性,又具有实用性。
二. 学情分析对于七年级的学生来说,他们已经具备了一定的代数基础,对于方程也有了一定的认识。
但是,对于一元一次方程的概念、性质和解法,他们还不是很清楚。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握一元一次方程的相关知识。
三. 说教学目标1.知识与技能目标:使学生理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生发现问题、分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.教学重点:一元一次方程的概念、性质和解法。
2.教学难点:一元一次方程的解法,特别是解方程的步骤和注意事项。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合学习pad等现代教育技术,提高教学效果。
六. 说教学过程1.导入新课:通过复习旧知识,引导学生进入新课,激发学生的学习兴趣。
2.自主学习:让学生自主探究一元一次方程的概念和性质,培养学生独立思考的能力。
3.合作交流:让学生分组讨论一元一次方程的解法,互相学习,共同进步。
4.教师讲解:针对学生在自主学习和合作交流中遇到的问题,进行讲解和解答。
5.巩固练习:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。
6.课堂小结:让学生总结一元一次方程的概念、性质和解法,加深对知识的理解。
北师大版数学七年级上册5.1《认识一元一次方程》教案1一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的内容是让学生初步了解一元一次方程的概念,学会解一元一次方程,培养学生解决实际问题的能力。
通过本节课的学习,学生能够理解一元一次方程的定义,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、整式等基础知识,对数学符号和运算有一定的了解。
但是,对于一元一次方程这一概念,学生可能比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握一元一次方程的概念和解法。
三. 教学目标1.知识与技能:让学生了解一元一次方程的概念,学会解一元一次方程。
2.过程与方法:通过实际问题,让学生感受数学与生活的联系,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次方程的概念和解法。
2.难点:理解一元一次方程的实际意义和解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生思考,用案例教学法讲解一元一次方程的解法,小组合作法让学生在讨论中巩固知识。
六. 教学准备1.准备一些实际问题,用于引导学生思考和练习。
2.准备PPT,用于展示和讲解一元一次方程的解法。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题。
例如,假设小明有3个苹果,每天吃掉1个,问5天后他还剩下几个苹果?这个问题可以引导学生思考如何用数学方法表示这个问题,从而引入一元一次方程的概念。
2.呈现(10分钟)通过PPT展示一元一次方程的定义和解法。
一元一次方程的一般形式为ax+b=0,其中a和b是常数,x是未知数。
解一元一次方程的步骤为:移项、合并同类项、化简、求解。
3.操练(10分钟)让学生练习解一元一次方程。
5.1 认识一元一次方程(第1课时)一、学生起点分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。
对方程已有初步认识,但并没有学习“一元一次方程”准确的理性的概念。
二、学习任务分析本节从有趣的“猜年龄”游戏入手,通过对五个熟悉的实际问题的分析,学生结合已有知识,能得出一元一次方程。
在此过程中,学生逐渐体会方程是刻画现实世界、解决实际问题的有效数学模型。
本节的重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念。
本节的难点:由特殊的几个方程的共同特点归纳一元一次方程的概念。
三、教学目标1、在对实际问题情境的分析过程中感受方程模型的意义;2、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;3、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。
四、教学过程设计环节一:阅读章前图内容1:请一位同学阅读章前图中关于“丟番图”的故事。
(大约1分钟)丢番图(Diophantus)是古希腊数学家。
人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程。
上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛。
五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉。
悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途。
——出自《希腊诗文选》(The GreekAnthology)第 126 题目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。
效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容2。
工程问题
一、理解工程类问题的含义,正确列出方程
突破建议:
1.对于工作效率、工作时间和工作量的含义,特别是工作量没有具体指明时用单位“1”表示时,工作效率的表示方法,教师要结合具体的情景和问题进行分析和讲解,让以前接触过的知识有新的、更准确的理解.教学时可以补充如下问题:
一项工作甲单独做5天完成,乙单独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是.一项工作甲单独做天完成,乙单独做天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是.)学习过程中,应该尽可能地让学生尝试独立解决问题,教师再根据学生掌握的情况予以点拨和概括,切忌教师包办代替.
2.在寻找工程问题中等量关系时应明确,当一件工作完成了,此时总的工作量是“1”;只完成了其中一部分,其工作量可以由工作时间与工作效率给出.
3.对多人合作完成的工作效率表示,要防止学生对“合作”的数学符号表达产生错误.例如:一项工作甲单独做天完成,乙单独做天完成,则甲、乙合作的工作效率应是,而不是.
例 1 有一批零件加工任务,甲单独做40h完成,乙单独做30h完成,甲做了几小时后另有紧急任务离开,剩下的任务由乙单独完成,乙比甲多做了2h.求甲做了几小时.
解析:本题考查列一元一次方程解决“工程问题”.
设甲做了h.此时题目中相关的信息整理如下表:
甲
乙
工作时间(h)
工作效率
工作量
由题意,得,解得.
答:甲做了16小时.
例 2 为筹备学校数学文化节,七年级⑴班承担了制作标志小旗的任务,原计划该班一半的同学参加制作,每天制作40面.而实际上,在完成了三分之一任务后,全班同学一起参与了余下的标志小旗的制作,结果比原计划提前一天半完成任务.假设每人制作标志小旗的工作效率相同,问该班一共需要制作多少面标志小旗?
解析:本题考查列一元一次方程解决“工程问题”.
法1(直接设元).设该班一共需要制作面标志小旗,依题意得,解得.
法2(间接设元).设七年级⑴班原计划天完成任务,则该班一共需要制作标志小旗面,依题意得,解得,所以.
答:该班一共需要制作标志小旗180面.
二、列一元一次方程解决实际问题的基本步骤
列一元一次方程解决实际问题的基本思路可以简述为:问题方程解答.一般地,可以归纳成“审、设、列、解、验、答”几个步骤.
1.“审”是指读懂题目,弄清题意,明确题目中哪些是已知量,哪些是未知量,以及已知量与未知量之间的关系,寻找等量关系;
2.“设”是指设未知数,一般地,题目要求什么量就设什么量为未知数,但有时也可以间接地设未知数;
3.“列”是指列方程,即用式子表示相等关系中的各个量,再列出方程,注意方程两边应是同一类量,单位要统一;
4.“解”是指解方程,求出未知数的值;
5.“验”是指检验方程的解是否符合题目的实际意义.当求得的解不符合题目的实际意义时,需明确指出原因并舍去;
6.“答”是指写出答案,要注意书写单位.
例 3 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲水管6小时可注满水池,单独开乙水管8小时可注满水池,单独开丙水管9小时可将满池的水排空.若先将甲、乙两
个水管同时开放2小时,然后打开丙水管,问打开丙水管几小时后仍然可以注满水池?
解析:本题考查列方程解决“工程问题”.由题意知,本题中相等的数量关系为“甲、乙水管开放2h的进水量+甲、乙、丙水管同时开放若干小时的进水量=1”.
设打开丙水管小时后仍可注满水池.依题意得.解得.
答:打开丙水管小时后仍可注满水池.。