2-3集成运算放大器的噪声
- 格式:ppt
- 大小:1.53 MB
- 文档页数:44
第二部分:运算放大器噪声介绍作者:TI高级应用工程师Art Kay噪声的重要特性之一就是其频谱密度。
电压噪声频谱密度是指每平方根赫兹的有效(RMS) 噪声电压(通常单位为nV/rt-Hz)。
功率谱密度的单位为W/Hz。
在上一篇文章中,我们了解到电阻的热噪声可用方程式 2.1 计算得出。
该算式经过修改也可适用于频谱密度。
热噪声的重要特性之一就在于频谱密度图较平坦(也就是说所有频率的能量相同)。
因此,热噪声有时也称作宽带噪声。
运算放大器也存在宽带噪声。
宽带噪声即为频谱密度图较平坦的噪声。
方程式2.1:频谱密度——经修改后的热噪声方程式图2.1:运算放大器噪声频谱密度除了宽带噪声之外,运算放大器常还有低频噪声区,该区的频谱密度图并不平坦。
这种噪声称作1/f 噪声,或闪烁噪声,或低频噪声。
通常说来,1/f 噪声的功率谱以1/f 的速率下降。
这就是说,电压谱会以1/f(1/2 ) 的速率下降。
不过实际上,1/f 函数的指数会略有偏差。
图2.1 显示了典型运算放大器在1/f 区及宽带区的频谱情况。
请注意,频谱密度图还显示了电流噪声情况(单位为fA/rt-Hz)。
我们还应注意到另一点重要的情况,即1/f 噪声还能用正态分布曲线表示,因此第一部分中介绍的数学原理仍然适用。
图2.2 显示了1/f 噪声的时域情况。
请注意,本图的X 轴单位为秒,随时间发生较慢变化是1/f 噪声的典型特征。
图2.2:时域所对应的1/f 噪声及统计学分析结果图2.3 描述了运算放大器噪声的标准模型,其包括两个不相关的电流噪声源与一个电压噪声源,连接于运算放大器的输入端。
我们可将电压噪声源视为随时间变化的输入偏移电压分量,而电流噪声源则可视为随时间变化的偏置电流分量。
图2.3:运算放大器的噪声模型运算放大器噪声分析方法运算放大器噪声分析方法是根据运放数据表上的数据计算出运放电路峰峰值输出噪声。
在介绍有关方法的时候,我们所用的算式适用于最简单的运算放大器电路。
运算放⼤器参数详解运算放⼤器参数详解技术2010-12-19 22:05:36 阅读80 评论0 字号:⼤中⼩订阅运算放⼤器(常简称为“运放”)是具有很⾼放⼤倍数的电路单元。
在实际电路中,通常结合反馈⽹络共同组成某种功能模块。
由于早期应⽤于模拟计算机中,⽤以实现数学运算,故得名“运算放⼤器”,此名称⼀直延续⾄今。
运放是⼀个从功能的⾓度命名的电路单元,可以由分⽴的器件实现,也可以实现在半导体芯⽚当中。
随着半导体技术的发展,如今绝⼤部分的运放是以单⽚的形式存在。
现今运放的种类繁多,⼴泛应⽤于⼏乎所有的⾏业当中。
历史直流放⼤电路在⼯业技术领域中,特别是在⼀些测量仪器和⾃动化控制系统中应⽤⾮常⼴泛。
如在⼀些⾃动控制系统中,⾸先要把被控制的⾮电量(如温度、转速、压⼒、流量、照度等)⽤传感器转换为电信号,再与给定量⽐较,得到⼀个微弱的偏差信号。
因为这个微弱的偏差信号的幅度和功率均不⾜以推动显⽰或者执⾏机构,所以需要把这个偏差信号放⼤到需要的程度,再去推动执⾏机构或送到仪表中去显⽰,从⽽达到⾃动控制和测量的⽬的。
因为被放⼤的信号多数变化⽐较缓慢的直流信号,分析交流信号放⼤的放⼤器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放⼤。
能够有效地放⼤缓慢变化的直流信号的最常⽤的器件是运算放⼤器。
运算放⼤器最早被发明作为模拟信号的运算(实现加减乘除⽐例微分积分等)单元,是模拟电⼦计算机的基本组成部件,由真空电⼦管组成。
⽬前所⽤的运算放⼤器,是把多个晶体管组成的直接耦合的具有⾼放⼤倍数的电路,集成在⼀块微⼩的硅⽚上。
第⼀块集成运放电路是美国仙童(fairchild)公司发明的µA741,在60年代后期⼴泛流⾏。
直到今天µA741仍然是各⼤学电⼦⼯程系中讲解运放原理的典型教材。
原理运放如上图有两个输⼊端a,b和⼀个输出端o.也称为倒向输⼊端(反相输⼊端),⾮倒向输⼊端(同相输⼊端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际⽅向从a 端指向公共端时,输出电压U实际⽅向则⾃公共端指向o端,即两者的⽅向正好相反.当输⼊电压U+加在b端和公共端之间,U与U+两者的实际⽅向相对公共端恰好相同.为了区别起见,a端和b 端分别⽤"-"和"+"号标出,但不要将它们误认为电压参考⽅向的正负极性.电压的正负极性应另外标出或⽤箭头表⽰.反转放⼤器和⾮反转放⼤器如下图:⼀般可将运放简单地视为:具有⼀个信号输出端⼝(Out)和同相、反相两个⾼阻抗输⼊端的⾼增益直接耦合电压放⼤单元,因此可采⽤运放制作同相、反相及差分放⼤器。
各种放大器及它们的特点1.通用型集成运算放大器通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。
通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。
Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。
2.高精度集成运算放大器高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。
这类运算放大器的噪声也比较小。
其中单片高精度集成运算放大器的失调电压可小到几微伏,温度漂移小到几十微伏每摄氏度。
3.高速型集成运算放大器高速型集成运算放大器的输出电压转换速率很大,有的可达2~3kV/μS。
4.高输入阻抗集成运算放大器高输入阻抗集成运算放大器的输入阻抗十分大,输入电流非常小。
这类运算放大器的输入级往往采用MOS管。
5.低功耗集成运算放大器低功耗集成运算放大器工作时的电流非常小,电源电压也很低,整个运算放大器的功耗仅为几十微瓦。
这类集成运算放大器多用于便携式电子产品中。
6.宽频带集成运算放大器宽频带集成运算放大器的频带很宽,其单位增益带宽可达千兆赫以上,往往用于宽频带放大电路中。
7.高压型集成运算放大器一般集成运算放大器的供电电压在15V以下,而高压型集成运算放大器的供电电压可达数十伏。
8.功率型集成运算放大器功率型集成运算放大器的输出级,可向负载提供比较大的功率输出。
9.光纤放大器光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了衰减对光网络传输速率与距离的限制,更重要的是它开创了1550nm频段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。