平面问题分为平面应力和平面应变问题
- 格式:docx
- 大小:16.19 KB
- 文档页数:1
弹性力学重点复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
平面应力问题和平面应变问题
平面应力和平面应变是力学研究中的一个重要内容,它们主要涉及到应力和应变的表达、状态的判断以及它们之间的联系。
首先,平面应力是指施加在平面上的外力,它以牛顿力/
千克为单位来表示。
应力分为正应力和负应力,当施加的外力为正时,应力也是正的,反之亦然。
应力的大小由施加的外力的大小决定,如果外力越大,应力越大,反之亦然。
其次,平面应变是指在应力作用下物体的形变,它以百分比表示,一般用“δ”表示。
应变可以分为正应变和负应变,正
应变表示物体受力时膨胀,负应变表示物体受力时压缩,应变的大小与应力的大小成正比,如果应力越大,应变也越大,反之亦然。
最后,平面应力和应变之间的关系是对称的,它们的关系可以用应力-应变曲线来表示,一般来说,应力和应变的关系
是线性的,也就是说,如果应力增加一倍,应变也会增加一倍。
总之,平面应力和平面应变是力学研究中的一个重要内容,它们主要涉及到应力和应变的表达、状态的判断以及它们之间的联系。
应力和应变之间的关系可以用应力-应变曲线来表示,一般来说,应力和应变的关系是线性的,应力增加一倍,应变也会增加一倍。
一、填空题【1】弹性体的特征:在外力作用下物体变形,当外力不超过一定限度时,除去外力后变形能完全恢复。
【2】弹性力学的平面问题包括:平面应力问题和平面应变问题;【3】变质岩分类包括片理状岩类(片麻状构造、片状构造、千枚状构造、板状构造)和块状岩类(块状构造);【4】岩石的密度:岩石单位体积所具有的质量。
【5】岩石的容重:岩石单位体积所具有的重量。
【6】岩石的容重取决于:(1)岩石的矿物成分;(2)孔隙发育程度;(3)含水量【7】岩石强度:是指岩石在外荷载作用下,达到破坏前所能承受的最大应力。
【8】岩石的三轴抗压强度:是指岩石在三围荷载作用下,达到破坏前所能承受的最大压应力。
【9】三轴压缩试验的加载方式(1)真三轴加载;(2)伪三轴加载;【10】岩石的变形有:(1)弹性变形;(2)塑性变形;(3)黏性变形;【10】岩体的结构单元有:(1)结构面(坚硬结构面、软弱结构面);(2)结构体(块状结构体、板状结构体);【11】岩体的赋存环境包括:(1)地应力;(2)地下水;(3)地温;【12】根据结构面的成因不同分:(1)原生结构面(2)构造结构面(3)次生结构面【13】流变现象:是指应力-应变曲线与时间因素有关的性质,岩体在变形过程中有时间效应的现象。
【14】岩石的流变包括:(1)蠕变(当应力不变时,变形随时间的延长而增加的现象);(2)松弛(当变形一定时,应力随时间的延长而减小的现象);(3)弹性后效(当瞬间加载或卸载时,应变滞后于应力的现象)。
【15】围岩-支护共同作用:是指围岩与支护形成一个共同体,使其两者之间产生相互耦合和相互影响的情况。
【16】马克斯威尔体(本构方程、蠕变方程、松弛方程)和凯尔文体(本构方程、蠕变方程、弹性后效(卸载效应))的相关方程答:马克斯威尔体具有瞬间变形、等速蠕变和松弛的性质;凯尔文体具有弹性后效、稳定蠕变,没有松弛的性质;【17】岩石种类:岩浆岩、变质岩、沉积岩。
岩浆岩:深成岩、浅成岩、喷出岩。
一、20分)(×) 1. 节点的位置依赖于形态,而并不依赖于载荷的位置( √ ) 2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×) 3. 不能把梁单元、壳单元和实体单元混合在一起作成模型( √ ) 4. 四边形的平面单元尽可能作成接近正方形形状的单元(×) 5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×) 6. 用有限元法不可以对运动的物体的结构进行静力分析( √ ) 7. 一般应力变化大的地方单元尺寸要划的小才好(×) 8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度( √ ) 9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小( √ ) 10 一维变带宽存储通常比二维等带宽存储更节省存储量。
二、填空(20 分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。
2 .平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。
3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。
4 .单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。
5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。
6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。
7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为} = [D][B]6}e 。
1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。
平面问题分为平面应力问题和平面应变问题。
平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。
由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。
平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。
平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。
2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。
其中包括6个应力分量,6个应变分量,3个位移分量。
平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。
根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。
对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。
对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。
设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。
外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。
平面应变问题和平面应力问题的异同点1. 前言在我们讨论材料力学时,平面应变和应力这两个概念就像两个兄弟,性格各异却又密不可分。
想象一下,平面应变就像个爱静的书呆子,而平面应力则是那个热爱社交的朋友。
今天就来聊聊这两个家伙的异同,看看他们在我们生活中是怎么“打交道”的。
2. 平面应变问题2.1 定义与特征首先,平面应变问题指的是在某些条件下,材料在某个平面上的变形情况。
简单来说,就是我们常见的“拉伸”和“压缩”情景。
想象一下,像橡皮泥被捏扁了,表面看起来光滑,但内部却可能发生了复杂的变形。
在这种情况下,材料的某一方向的变形被假设为零,这样我们就能简单地处理问题。
2.2 应用场景说到应用,这平面应变可不简单!它常常出现在一些工程问题中,比如桥梁、隧道建设等,特别是在大规模的结构中。
想象一下,一个大桥的承重结构,所有的力都集中在某个平面上,这时应变问题就浮出水面了。
工程师们可得好好研究这个问题,才能保证桥梁的安全性。
3. 平面应力问题3.1 定义与特征转到平面应力问题,哎呀,这家伙可就热闹多了!它主要讨论在一个平面内的应力状态,简单来说,就是材料受到的各种力作用下的反应。
想象你在拥挤的地铁里被挤来挤去,那种“被压力包围”的感觉就是平面应力的典型表现。
这个时候,虽然我们也考虑了材料的厚度,但更关注的是在某个面上的力的分布。
3.2 应用场景在实际应用中,平面应力同样是不可或缺的。
很多时候,我们在设计零件,比如汽车车身或飞机机翼时,就会用到这个概念。
设计师们可得深思熟虑,确保在高速行驶时,这些材料能承受得住压力,绝不能让人有“毛毛的感觉”。
4. 异同点总结4.1 相似之处好啦,现在我们来看看这两个概念的相似之处。
首先,平面应变和应力都涉及到材料如何在外力作用下变形或反应,都是力学的基础。
其次,它们都为工程师提供了重要的分析工具,帮助他们设计出安全可靠的结构,真是一对“亲密无间”的兄弟。
4.2 不同之处不过,这两者的不同也挺明显的。
201330131867张伟
若干平面问题汇总
平面问题分为平面应力和平面应变问题,平面应力问题的特征:尺寸方面,一个方向的尺寸远小于另外两个方向的尺寸;受力方面,外力平行于板面且不沿厚度方向变化。
平面应变问题的特征:尺寸方面,一个方向的尺寸远大于另外两个方向的尺寸;受力方面,外力平行于横截面且不沿长度方向变化。
不同的材料有不同的弹性模量,泊松比,其本构关系也不同。
相容方程的推导可知物体必须变形满足几何方程,且各个应变分量是互相关联的。
应力相容方程建立在应变相容方程的基础上,常体力下的相容方程是应力相容方程的一种特例。
应力函数的相容方程是建立在平衡微分方程的基础上,该方程又叫双重调和方程。
由单纯的几何方程推导出来应变相容方程,然后加上物理方程,发展成了应力相容方程。
由单纯的平衡微分方程推导出了双重调和方程。
平面问题的解法有位移法,应力法,混合法。
在体力为常量,用应力法求解平面问题的方法有逆解法和半逆解法。
逆解法先设定Ф函数,求应力分量,验算是否满足边界条件,不满足就修改Ф函数,直到满足。
半逆解法根据问题,实际状况,假定部分应力分量的函数形式,然后积分求出应力函数,回代求出全部应力分量,,验算是否满足边界条件,不满足就重新假定应力分量函数,直到满足。
圣维南原理:较小的面力的影响效应产生在接触范围域内,远离这个域,效应会降低到忽略不计。
、
工程科研方法:有限元法,实验法,解析法。