塑性成型工艺讲解
- 格式:docx
- 大小:291.81 KB
- 文档页数:20
材料成型工艺基础:金属塑性成形1. 引言金属塑性成形是制造业中常见的一种材料成型工艺。
通过对金属材料施加力量,使其在一定的温度和应变条件下发生塑性变形,从而得到所需形状和尺寸的制品。
这种成形工艺广泛应用于汽车、航空航天、机械制造等领域。
本文将介绍金属塑性成形的基本概念、工艺流程以及常见的金属塑性成形方法。
2. 基本概念2.1 金属塑性成形的定义金属塑性成形是指将金属材料通过施加力量,在一定的温度和应变条件下,使其发生塑性变形,从而得到所需形状和尺寸的工艺过程。
2.2 塑性变形的基本概念塑性变形是指材料在一定的应力作用下,在超过其屈服点之后发生的可逆性变形。
在这种变形中,金属材料的原子结构会发生改变,从而改变了材料的形状和尺寸。
3. 工艺流程金属塑性成形的工艺流程主要包括以下几个步骤:3.1 原材料准备在金属塑性成形工艺中,首先需要准备好所需的金属原材料。
原材料的选择需要满足产品的要求,包括材料的强度、韧性、耐蚀性等。
3.2 材料加热在金属塑性成形之前,通常需要将金属材料进行加热。
加热可以使金属材料达到一定的塑性状态,更容易发生塑性变形。
加热的温度和时间需要根据不同的金属材料和成形要求进行调整。
3.3 成型工艺金属塑性成形的成型工艺包括以下几种常见方法:3.3.1 锻造锻造是一种利用压力将金属材料塑性变形成形的方法。
在锻造过程中,金属材料会经过压缩、拉伸、冷却等多个步骤,最终得到所需的形状。
3.3.2 拉伸拉伸是将金属材料放在拉伸机上,通过施加力量使其发生塑性变形的方法。
通过拉伸可以改变金属材料的形状和尺寸。
3.3.3 深冲深冲是将金属材料放在冲压机上,通过模具对材料进行冲压,使其发生塑性变形的方法。
通过调整模具的形状和尺寸,可以得到不同形状和尺寸的制品。
3.4 后处理在金属塑性成形完成之后,通常需要进行一些后处理工艺。
包括去除表面的氧化物、清洗、退火等。
后处理的目的是提高产品的表面质量和性能。
4. 常见的金属塑性成形方法4.1 冷镦成形冷镦成形是一种将金属材料通过冷镦机进行挤压、拉伸、弯曲等操作,使其发生塑性变形的方法。
第五节其它塑性成形方法随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件.其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。
一、挤压挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法.挤压法的特点:(1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。
在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。
对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。
(2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。
(3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3。
2~0。
4μ m,从而(4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能.(5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化.挤压方法的分类:1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:(1)正挤压金属流动方向与凸模运动方向相同,如图2—69所示。
(2)反挤压金属流动方向与凸模运动方向相反,如图2—70所示.(3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2—71所示。
(4)径向挤压金属流动方向与凸模运动方向成90°角,如图2—72所示。
图2-69 正挤压图2—70 反挤压图2—71 复合挤压图2-72 径向挤压2.按照挤压时金属坯料所处的温度不同,可分为热挤压、温挤压和冷挤压三种方式:(1)热挤压变形温度高于金属材料的再结晶温度。
塑性成形工艺技术塑性成形工艺技术是一种利用热塑性材料在加热软化状态下,通过模具施加一定的力量,在特定的温度和压力条件下,使材料变形成为所需形状的一种工艺技术。
塑性成形工艺技术广泛应用于制造业领域中,如汽车制造、电器制造、日用品制造等。
塑性成形工艺技术的主要流程包括原料选择、加热、成形和冷却等几个步骤。
首先,需要选择适合的热塑性材料作为原料,这些材料具有良好的可塑性和可加工性。
接下来,通过加热使得材料软化,并将其放置在模具中。
在施加一定的压力下,材料逐渐变形成为所需的形状。
最后,冷却过程会使得材料固化并保持所需形状。
塑性成形工艺技术的主要优点是可以制造出复杂的形状和细节,且成本较低。
相对于其他成形工艺,塑性成形工艺技术不需要使用复杂的模具,并且可以一次性制造出整个产品,节省了制造和加工的时间和成本。
此外,塑性成形工艺技术还可以在材料中添加颜色、纹路等特殊效果,使得产品更加美观。
塑性成形工艺技术的应用非常广泛。
在汽车制造中,塑性成形工艺技术可以用于制造车身覆盖件、内饰件等。
在电器制造中,可以用于制造外壳、面板等部件。
在日用品制造中,常常使用塑性成形工艺技术制造塑料杯、碗、筷子等。
当然,塑性成形工艺技术也存在一些限制。
首先,只能使用热塑性材料进行成形,热固性材料无法应用该工艺。
其次,对于一些较大尺寸的产品,可能需要较大的设备和工艺,并且成形过程可能需要较长的时间。
此外,塑性成形工艺技术中还可能出现一些质量问题,如表面缺陷、壁厚不均等。
总结来说,塑性成形工艺技术是一种应用广泛、效率高且成本低的制造工艺。
它不仅可以制造出复杂的形状和细节,还可以满足产品的外观要求。
随着技术的不断进步,塑性成形工艺技术将会在制造业中发挥越来越重要的作用。
材料的塑性成形工艺引言塑性成形是一种常见的材料加工工艺,通过施加力量使材料发生形变,以获得所需的形状和尺寸。
塑性成形工艺包括冷拔、冷加工、锻造、挤压、拉伸等多种方法。
本文将介绍几种常见的材料塑性成形工艺及其特点。
一、冷拔1.1 工艺流程冷拔是一种拉伸加工的方法,主要用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷拔加工。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.均质化处理:通过变形和退火等处理方法,使材料组织更加均匀。
4.拉拔:将材料拉伸至所需的形状和尺寸。
5.精整:通过切割、修整等方法,使成品达到要求的尺寸。
1.2 特点冷拔工艺具有以下特点:•成品尺寸精度高,表面质量好。
•可加工各种材料,包括金属和非金属材料。
•可以提高材料的强度和硬度。
二、冷加工2.1 工艺流程冷加工是一种在常温下进行的成形加工方法,常用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷加工。
2.切削:通过刀具对材料进行切削加工。
3.成型:通过冷加工设备对材料进行压制、弯曲、卷曲等成型操作。
4.精整:通过修整、研磨等方法,使成品达到要求的尺寸和表面质量。
2.2 特点冷加工具有以下特点:•成品尺寸精度高,表面质量好。
•可以加工多种材料,包括金属和非金属材料。
•部件形状复杂度高,适用于精密加工要求较高的产品。
三、锻造3.1 工艺流程锻造是一种通过施加压力将材料压制成所需形状的工艺方法。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行锻造。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.锻造:通过锻造设备施加压力,将材料压制成所需形状。
4.精整:通过修整、热处理等方法,使成品达到要求的尺寸和性能。
3.2 特点锻造具有以下特点:•可以加工各种金属材料,包括高温合金和非金属材料。
•成品强度高,韧性好。
•高生产效率,适用于大批量生产。
四、挤压4.1 工艺流程挤压是一种将材料挤压成所需截面形状的塑性成形工艺。
塑性成形原理知识点塑性成形是一种利用金属材料的塑性变形能力,在一定的条件下通过压力使金属材料发生塑性变形,从而获得所需形状的加工方法。
塑性成形技术是金属加工工艺中的重要分支,广泛应用于汽车、航空、航天、电子、家电、建筑等工业领域。
1.塑性变形:在塑性成形过程中,金属材料通过外力作用下的塑性变形使其形状发生改变。
塑性变形是金属材料中原子的相对位置发生改变而引起的宏观形变,其主要表现为材料的延伸、压缩、弯曲等。
塑性变形是金属材料的塑性性质所决定的,不同材料的塑性性能不同。
2.应力-应变关系:金属材料受到外力作用时,材料内部会产生应力,应力与应变之间存在一定的关系。
在塑性成形过程中,材料会发生塑性变形,使其产生应变。
应力-应变关系是描述材料塑性变形过程中应力和应变之间关系的数学模型,常用的模型有胡克定律模型和流变模型。
3.材料流动:塑性成形过程中,材料会发生流动从而获得所需的形状。
材料流动是指塑性材料在外力作用下,发生内部原子的相对位移和重新组合,从而使整个材料的结构发生变化。
材料流动是实现塑性成形的关键,其流动性能决定了成形工艺的可行性和成品质量。
4.成形工艺:塑性成形工艺是金属材料经过一系列工艺操作,通过压力使其发生塑性变形,最终获得所需形状的过程。
常见的塑性成形工艺包括冲压、拉伸、挤压、压铸、滚压等。
不同工艺适用于不同形状的零件,根据材料的性质和零件的要求选择合适的成形工艺。
5.工艺过程控制:塑性成形过程中,需要对各个环节进行控制以确保成品质量。
工艺过程控制包括工艺参数的选择、设备的调整、模具结构的设计等。
在塑性成形过程中,要控制好温度、应力、应变速率等因素,以避免过大的变形应力引起材料的断裂或变形过大导致零件尺寸偏差。
塑性成形技术不仅可以实现复杂形状的制造,而且可以提高材料的强度和刚度,降低材料的质量,节省原材料和能源。
因此,塑性成形技术在现代工业生产中具有重要的地位和应用价值。
目录第1章工艺分析......................................................... - 1 - 1.1设计任务书 ........................................................ - 1 - 1.2结构形状 .......................................................... - 1 - 1.3尺寸精度与粗糙度 .................................................. - 1 - 1.4 10钢材料性能 ..................................................... - 2 - 1.5工序 .............................................................. - 2 - 第2章生产方案制定..................................................... - 3 - 第3章模具类型与结构形式............................................... - 4 - 3.1 送料方式:........................................................ - 4 - 3.2 定位方式.......................................................... - 4 -3.2.1 横向定位方式.................................................. - 4 -3.2.2 纵向定位装置.................................................. - 4 - 3.3 出料方式.......................................................... - 5 - 3.4卸料方式 .......................................................... - 5 - 3.5推件装置 .......................................................... - 5 - 3.6导向装置 .......................................................... - 5 - 第4章工艺计算......................................................... - 6 -4.1排样设计 .......................................................... - 6 -4.1.1.方案一直排式................................................. - 6 -4.1.2 方案二多排................................................... - 9 - 4.2压力中心的确定 ................................................... - 10 - 4.3冲压力与压力机的选择 ............................................. - 11 -4.3.1冲裁力的计算.................................................. - 11 -4.3.2压力机的选取.................................................. - 12 - 4.4刃口尺寸的计算 .................................................. - 12 -摘要本次课程设计对简单的冲裁件的设计。
在次设计中,我们成功的完成了本次课程设计任务。
本次设计过程包括对材料性能的分析、生产方案的制定、模具类型及结构的选择、排样的设计,冲压力的计算及刃口的设计等。
综合运用和巩固冲压工艺及有关课程的基本理论和专业知识,培养我们从事冲压工艺设计的初步能力,为后续毕业设计和实际工作打下良好基础。
学习冲压工艺的一般方法,了解和掌握冲压工艺的设计过程和计算方法,培养正确的设计思想,计算,分析问题和解决问题的能力。
通过本次设计,我们还学会运用标准、规范、手册、图册和查阅有关技术资料等,培养工艺设计的基本技能。
在设计中培养学生养成认真负责、踏实细致的工作作风和严谨的科学态度,强化质量意识和时间观念,培养良好的职业习惯。
本次设计大致按一下步骤设计:零件的工艺性分析,生产方案的确定,确定模具类型与结构形式,工艺计算。
冲裁件按照IT14级计算,凹、凸模按照分别加工,冲裁件剪断面的粗糙度可以选择Ra12.5μm。
该冲裁件需要大批量生产且结构简单,故采用级进模自动送料方式生产。
横向定位方式采用挡料板,无侧压装置,纵向定位方式采用固定挡料销、始用挡料销和导正销。
卸料方式采用固定卸料方式,出料方式采用下出料方式,推件装置采用刚性推件装置。
导向方式采用导柱和导套排样方式采用多排方式。
落料凹模刃口尺寸φ33.8125+0.0250mm,凸模φ33.5665-0.0160mm冲孔凸模尺寸φ18.135-0.0450mm, φ4.09-0.0080mm,凹模φ18.318+0.0180mm,φ44.336+0.0120mm,孔心距17±0.0375mm,压力中心坐标(0.179,0),压力机的型号为JH21-25开式固定台压力机。
设计的不足:多排冲裁时,冲裁完一边时,需要将条料翻转,需要重新定位送进关键词级进模;凸模;凹模;冲孔;落料铜陵学院课程设计第1章工艺分析1.1设计任务书产品:零件三批量:大批量材料:10钢厚度:2mm图1-1 冲裁零件图1.2结构形状该冲裁件为圆环形,结构简单,左右对称,尺寸较小,无悬臂。
因为其上冲孔最小直径为4mm,尺寸较小故采用有导向凸模冲孔。
查表1-1可得4mm>0.35t,孔到边缘的最小距离为2mm=1t。
故适合冲裁。
1.3尺寸精度与粗糙度因为此冲裁件结构简单,精度要求不高,故采用经济精度,一般为IT12~IT14。
这里选选IT12级精度,使用普通冲裁即可达到零件图样要求。
粗糙度要求也不高,故选Ra12.5μm较合适。
第三组塑性成型工艺(冲压)表1-2公差等级表查公差表1-2得Φ4+0.180 Φ18+0.18φ34-0.251.4 10钢材料性能屈服极限σb=335MP 屈服强度σs=205MP 剪切强度τb=255~333MP10钢塑性好,韧性很好,易冷热加工成型,正火或冷加工后切削加工性能好。
故适合冲裁。
1.5工序冲孔、落料铜陵学院课程设计第2章生产方案制定该工件包括落料、冲孔两个基本工序,可以有三种工艺方案。
方案一:先冲孔,后落料。
采用单工序模生产。
方案二:冲孔﹣落料级进冲压。
采用级进模生产。
方案三:落料﹣冲孔复合冲压。
采用复合模生产。
表2-1单工序模、级进模和复合模的特点比较综上所述:由于该冲裁件结构简单,大批量生产,生产精度不算高,故采用方案二,级进模较适合。
第三组塑性成型工艺(冲压)第3章模具类型与结构形式3.1 送料方式:有自动、半自动及手动送料方式三种。
因为冲裁件是大批量生产,要保证生产率和安全性,选用自动送料方式。
又因为级进模生产中材料要求为条料或卷料,辊轴自动送料装置能用于很薄的条、带、卷料的送料,保证材料全长被利用。
故采用辊轴自动送料送料装置。
3.2 定位方式3.2.1 横向定位方式(1)导料板:在固定卸料式冲模和级进冲裁模中,条料的横向定位使用导料板。
(2)导料销:在复合冲裁模上,通常采用导料销进行导料(3)侧压装置:自动送料的模具不宜采用侧压装置。
由于采用级进模生产,采用自动送料方式,所以横向定位采用导料板定位。
3.2.2 纵向定位装置有固定挡料销、活动挡料销、回带式挡料装置、始用挡料装置、定位板和定位销。
导正销和侧刃定距。
(1)固定挡料销:主要用在落料模与顺装复合模上。
如果模具为弹性卸料方式,卸料板上要开辟小孔,以防止卸料板与挡料销碰撞。
(2)活动挡料销:通常安装在倒装落料模或倒装复合模的弹压卸料版上。
(3)回带式挡料装置,每次送料必须用搭边撞击挡料销,因此板料不能太薄,一般不应小于0.8mm且软铝板也不适用侧刃定距:对材料利用率较低。
(4)始用挡料装置:每增加一个工位就需要增加一个始用挡料装置,使操作方便(5)定位板和定位销:定位销和定位板一般用于快料,单个毛坯和工序件的定位所以选固定挡料销、始用挡料装置和导正销。
(6)导正销:定位精度高,多用于连续模中。
(7)侧刃定距:侧刃是用来切去条料旁侧少量材料而达到挡料的目的,条料边缘处会出现毛刺。
综上所述,采用固定挡料销作为条料的纵向定位,始用导料装置进行首件定位,导正销来提高精度。
故采用固定挡料销、始用导料装置和导正销。
,铜陵学院课程设计3.3 出料方式下出料。
级进模下出料方式比较安全,适用起来比较方便,便于收集落料件和冲孔废料。
3.4卸料方式有固定卸料装置,和弹性卸料装置。
固定卸料装置:卸料力大,卸料可靠。
因此,适合冲裁板料较厚(大于0.5mm)、平面度要求不很高的冲裁件。
弹性卸料装置:卸料力较小,但它既起卸料作用又起压料作用,所得冲裁件质量较好,平面度较高。
因此,质量要求较高的冲裁件或薄板冲裁(t<1.5mm)宜采用弹压卸料置。
所以选用固定卸料装置。
3.5推件装置有刚性和弹性两种。
刚性推件装置:推件力大,工作可靠,应用十分广泛弹性推件装置,用于板料较薄且平直度要求较高的冲裁件。
对于该冲裁件,宜选用刚性推件装置。
3.6导向装置方案一:导板式导向,导板导向装置分为固定导板和弹压导板两种。
方案二:导柱导套式导向装置,(1)采用中间导柱模架,导柱分布在矩形凹模的对称中心线上,两个导柱的直径不同,可避免上模与下模装错而发生啃模事件。
适用于单工序模和工位少的级进模。
(2)采用后侧导柱模架,其优点是工作面敞开,适用大件边缘冲裁,其缺点是刚性与安全性最差,工作不稳定,常用于小型冲模。
(3)采用对角导柱模架,导柱分布在举行凹模的对角线上,既可以横向送料又可以纵向送料。