优选第四章塑性成形及工艺控制
- 格式:ppt
- 大小:4.16 MB
- 文档页数:34
第一章塑性成形(塑性加工、压力加工):金属材料在一定的外力作用下,利用金属的塑性而使其成形为具有一定形状及一定力学性能的加工方法。
塑性成形工艺与其他加工工艺相比,特点:1、材料利用率高2、力学性能好3、尺寸精度高4、生产效率高塑性成形工艺的分类按加工对象的属性:一次塑性加工(轧制、挤压、拉拔等)、二次塑性加工按塑性成形毛坯特点:体积成形(块形成形)、板料成形轧制:纵轧、横轧、斜轧挤压(坯料后端施加压力):正挤压、反挤压、复合挤压拉拔(坯料前端施加压力)板料成形(冲压、冷冲压、板料冲压),按性质分为:分离工序(落料、冲孔、切断、切边、剖切等)、成形工序(弯曲、拉深、翻边、胀形、扩口、缩口、旋压等)体积成形,分为锻造(自由锻、模锻)、挤压(开式模锻、闭式模锻)自由锻,主要用于单件、小批量生产、大锻件生产或冶金厂开坯。
冲压工艺分类按变形性质分类:1、分离工序2、成形工序*按基本变形方式分类:1、冲裁2、弯曲3、拉深4、成形*按工序组合形式分类1、简单工序2、组合工序(1、复合冲压2、连续冲压3、连续-复合冲压)板料成形的失稳现象:拉伸失稳(板料在拉应力作用下局部出现缩颈或断裂)压缩失稳(板料在压应力作用下出现起皱)*板料冲压成形性能影响较大的力学性能指标:1、屈服强度σs(小好)2、屈强比σs/σb(小好)3、伸长率4、硬化指数n硬化指数:单向拉伸硬化曲线可写成σ=cε^n,其中指数n即为硬化指数,表示在塑性变形中材料的硬化程度。
*Q:什么叫加工硬化和硬化指数?加工硬化对冲压成形有有利和不利的影响?A:加工硬化:指随着冷变形程度的增加,金属材料的强度和硬度指标都有所提高,但塑性、韧性有所下降的现象。
优:由于加工过硬化使变形抗力提高,又提高了材料承载能力。
缺:加工硬化变形越大,会使断面在局部地方易形成缩颈,容易被拉断不利于成形。
5、厚向异性系数γ(大好)厚向异性系数越大,表示板料越不易在厚度方向上产生变形,不易出现变薄和增厚。
1塑性成形定义:金属材料在一定的外力作用下,利用金属的塑性使其成形为具有一定形状及一定力学性能的加工方法。
分类:一次塑性加工(轧制、挤压、拉拔),二次塑性加工{板料成形[分离工序(落料、冲孔、切断、切边、剖切等)、成型工序(弯曲、拉深、翻边、胀形、扩口、缩口、旋压)],体积成形(锻造{自由锻、模锻}(开式、闭式))、挤压))2冲压定义:它是利用冲模在压力机上对金属(或非金属)板料施加压力使其分离或变形,从而得到一定形状,并且满足一定使用要求的零件的方法。
分类:按变形性质分分离和成形分类:按基本变形方式分冲裁、弯曲、拉深、成形;按工序组合分简单和组合工序(复合工序、连续工序、连续—复合工序)。
3板料力学性能与冲压成形性能的关系:板料对冲压成形工艺的适应能力称为板料的冲压成形性能。
板料在成形中可能出现两种失稳,一种是拉伸失稳,即局部缩颈或断裂;另一种是压缩失稳,即拉力下的起皱。
失稳前可达到最大变形程度叫做成形极限,分为总体成形极限和局部成形极限。
成形极限越高板料冲压性能越好。
板料的冲压成形性能,应包括抗破裂性、贴模性、贴模性是指在中压中取得与磨具形状一致的能力。
成形过程中发生的起皱、塌陷等缺陷均会降低贴模性。
定型性是指零件脱模后保持其在模内既得形状的能力。
影响定型性的因素是回弹,零件脱模后回弹会造成尺寸误差。
贴模性和定型性是决定零件形状和尺寸精度的重要因素。
主要用抗破裂性作为评价板料冲压性能的指标。
板料力学性能指标与板料冲压性能有密切关系。
强度指标越高,产生相同变形量所需的力越大;塑性指标越高,成型时所能承受的极限变形量越大;刚性指标越高成型时抗失稳能力越大。
4板料冲压成形性能影响较大的力学性能指标屈服强度屈服强度小,材料容易屈服,则变形抗力小,压缩变形时不易出现起皱屈强比屈强比小说明值小而值大,即容易产生塑性变形而不易产生拉裂伸长率拉伸实验中,试样拉断时的伸长率硬化指数n:单向拉伸硬化曲线可写成,其中指数n即为硬化指数,表示在塑性变形中材料的硬化度。
材料的塑性成形工艺引言塑性成形是一种常见的材料加工工艺,通过施加力量使材料发生形变,以获得所需的形状和尺寸。
塑性成形工艺包括冷拔、冷加工、锻造、挤压、拉伸等多种方法。
本文将介绍几种常见的材料塑性成形工艺及其特点。
一、冷拔1.1 工艺流程冷拔是一种拉伸加工的方法,主要用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷拔加工。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.均质化处理:通过变形和退火等处理方法,使材料组织更加均匀。
4.拉拔:将材料拉伸至所需的形状和尺寸。
5.精整:通过切割、修整等方法,使成品达到要求的尺寸。
1.2 特点冷拔工艺具有以下特点:•成品尺寸精度高,表面质量好。
•可加工各种材料,包括金属和非金属材料。
•可以提高材料的强度和硬度。
二、冷加工2.1 工艺流程冷加工是一种在常温下进行的成形加工方法,常用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷加工。
2.切削:通过刀具对材料进行切削加工。
3.成型:通过冷加工设备对材料进行压制、弯曲、卷曲等成型操作。
4.精整:通过修整、研磨等方法,使成品达到要求的尺寸和表面质量。
2.2 特点冷加工具有以下特点:•成品尺寸精度高,表面质量好。
•可以加工多种材料,包括金属和非金属材料。
•部件形状复杂度高,适用于精密加工要求较高的产品。
三、锻造3.1 工艺流程锻造是一种通过施加压力将材料压制成所需形状的工艺方法。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行锻造。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.锻造:通过锻造设备施加压力,将材料压制成所需形状。
4.精整:通过修整、热处理等方法,使成品达到要求的尺寸和性能。
3.2 特点锻造具有以下特点:•可以加工各种金属材料,包括高温合金和非金属材料。
•成品强度高,韧性好。
•高生产效率,适用于大批量生产。
四、挤压4.1 工艺流程挤压是一种将材料挤压成所需截面形状的塑性成形工艺。
第一部分绪论一、塑性成形工艺分类1一次塑性加工:轧制、挤压、拉拔等工艺,是生产型材、板材、线材、管材的加工方法。
2二次塑性加工:以一次塑性加工获得的型材、板材、线材、管材、棒材为原材料进行再次塑性成形——冲压、锻造。
第二部分冲压工艺一、冲压加工三要素:1冲压设备2模具3原材料二、冲压工艺分类:1按变形性质分:⑴分离工序——被加工材料在外力作用下产生变形,当作用在变形部分的应力达到了材料的抗剪强度,材料便产生剪裂而分离,从而形成一定形状和尺寸的零件。
⑵成形工序——被加工材料在外力作用下仅仅产生塑性变形,得到一定形状和尺寸的零件,这些冲压工序统称成形工序。
2按变形方式分:冲裁、弯曲、拉深、成形。
3按工序组合形式分:⑴复合冲压⑵连续冲压⑶连续-复合冲压三、板料力学性能与冲压成形性能的关系1两种失稳状态:⑴拉伸失稳——板料在拉应力作用下局部出现缩颈或断裂。
⑵压缩失稳——板料在压应力作用下出现起皱。
2衡量冲压成形性能的标准——破裂性、贴模性、定形性。
⑴冲压成形性能——板料对冲压成形工艺的适应能力。
⑵贴模性——板料在冲压过程中取得与模具形状一致性的能力。
影响贴模性的因素是起皱、塌陷。
⑶定形性——零件脱模后保持其在模内既得形状的能力。
影响定形性的主要因素是回弹。
3板平面各向异性指数△γ△γ↑,表示板平面内各向异性↑,拉深时在零件端部出现不平整的凸耳现象,必须进行修边处理。
第三部分锻造工艺第一章热锻(P239)一、锻造分类1按变形温度:热锻、温锻、冷锻2按作用力来源:①手工锻造②机械锻造:自由锻模锻胎膜锻特种锻造胎膜锻——在自由锻设备上采用活动模具成形锻件的方法。
二、锻前加热(P242)1目的:↑塑性,↓变形抗力,使之易于流动成形并获得良好的锻后组织。
2加热方法:⑴火焰加热⑵电加热:①感应电加热②接触电加热③电阻炉加热⑶少无氧化加热:精锻生产中,实现少无氧化加热的加热方法:①快速加热②介质保护加热③少无氧化火焰加热三、锻造温度范围选择原则(P245~246)1始锻温度T始:AE线以下150~250℃,尽可能高,但不能过高2终锻温度T终:①碳钢:T终≧A1线②亚共析钢:T终=A3+15~50℃(800℃左右),尽可能低,但不能过低③共析钢和过共析钢: A1+50~70℃≤T终≤Acm线参见P246图9-9四、加热缺陷(P247)1氧化:生成氧化铁(氧化皮)2脱碳:表面含碳量↓,变软3过热:强度和韧性↓定义:当毛坯加热温度超过始锻温度或毛坯在高温下停留时间过长,都会引起奥氏体晶粒迅速长大,即过热。
塑性成形工艺优化与模具设计研究塑性成形是一种通过对金属和非金属材料施加压力和变形来制造零件和产品的工艺。
这种加工方法具有高效、经济和灵活性的特点,被广泛应用于汽车、航空航天、电子器件等行业。
然而,塑性成形过程中存在一些问题,如材料损失、成形难度大、模具寿命短等,因此有必要进行塑性成形工艺的优化与模具设计研究。
在塑性成形工艺优化方面,主要关注以下几个方面:原材料选型、加热方式、压力和变形速率控制等。
首先,原材料的选型尤为重要。
根据产品的要求和应用环境,选择合适的金属或非金属材料,以确保成形后的产品具有所需的力学性能和耐腐蚀性。
其次,加热方式对于塑性成形过程中材料的变形和流动性影响巨大。
根据成形材料的热导率和热膨胀系数,选择适当的加热方式,如电阻加热、电磁加热或火焰加热等。
此外,压力和变形速率的控制直接影响成形工艺的质量和效率。
通过合理调节和控制压力和变形速率,可以避免过度或不足的变形,提高产品的成形精度和质量。
塑性成形模具设计也是一个重要的研究方向。
模具设计直接决定了产品的几何形状和尺寸,同时也影响着成形工艺的效率和质量。
在模具设计过程中,需要考虑如下几个方面:模具材料的选择、模具结构设计和模具寿命的估计。
首先,模具材料的选择应根据成形材料的特性和成形工艺的要求来确定。
一般来说,模具材料具有高硬度、高强度和良好的耐磨性。
其次,模具的结构设计要尽量简单、合理,以提高成形的效率和精度。
设计时需要考虑到零件的具体形状和材料流动的路径,以充分利用材料的可塑性和各种成形力的传递。
最后,模具寿命估计是模具设计过程中一个关键的环节。
通过分析塑性成形过程中模具受力情况、摩擦和磨损等因素,可以估计模具的寿命并采取相应的措施延长模具的使用寿命。
为了达到塑性成形工艺优化与模具设计研究的目标,可以应用一些分析和优化方法。
首先,可以采用有限元分析来模拟和预测塑性成形过程中的变形、应力分布和温度变化。
通过这种方法,可以更好地理解和改善成形工艺的性能。