双导程蜗杆传动
- 格式:doc
- 大小:219.00 KB
- 文档页数:3
双线蜗杆的两级优化设计双导程蜗杆蜗轮传动是一个方便的消隙机构,它可用于精密机械工具和导向装置。
目的是尽量减少蜗杆和齿轮之间的摩擦力。
约束条件包括蜗杆几何体,应力,位移和蜗杆的固有频率。
为了避免困难的三维优化问题,本文介绍一种两阶段优化方法。
第一级优化使用一个近似模型,在这阶段蜗杆的线程是近似的元素。
蜗杆和蜗轮的节圆直径、模数以及左右侧模块的差异是设计变量。
第二级优化使用真正的三维实体模型与连续螺旋线确定最佳形状的蜗杆线程。
实例表明这是可行的和有效的。
关键词:机械设计;双导程蜗杆;两阶段优化引言蜗轮蜗杆齿轮组是一个重要的机械传动机构,这一装置优点在于其较高减速比和紧凑的尺寸。
这一机构的缺点是功率的损失相对其他类型的齿轮组高。
工业上蜗杆蜗轮组主要用于减速器、导向和定位装置。
因为蜗杆蜗轮组几何性质和动力传输机构不同于其他类型的齿轮,很多运动学和接触蜗杆和蜗轮齿的研究已经进行了1–[7]。
由于近年来高科技产业的蓬勃发展,对精密的机器和精密的制造工艺的需求迅速增加。
精确定位的切割工具或工件的关注重点精密机械制造工艺。
在机械领域精密齿轮和滚珠丝杠实现这些目标的关键部件。
但是众所周知,即使在最高级别的精密齿轮中齿间间隙仍不能消除。
反弹是影响定位精度的主要因素之一。
黑尔和斯洛克姆[ 8]提到一些美国隙设计专利。
其中之一是用于蜗轮蜗杆齿轮传动。
其设计理念是类似于一个滚珠螺杆。
在蜗杆的线程和蜗轮的齿牙之间插入滚珠,尽量减小蜗杆蜗轮之间反弹间隙。
这种设计成本高。
一种更便宜的方法,这是本文提到的,使用的是双导程蜗杆蜗轮组。
蜗杆的双引线是特别设计的,有两种不同导致双向的蜗杆线程。
由于不同的引导线,两侧的线程在轴向方向的厚度不同。
这种设计的优点是蜗杆蜗轮之间的间隙可以通过旋转蜗杆轴调整最适宜的线程确保蜗杆与蜗轮齿配合来减小。
拜尔和纂[ 9]讨论了几何型双导程蜗轮蜗杆。
先进的数学模型可以用来做接触分析与研究。
本文拜尔和纂[ 10 ]提出另外讨论接触牙齿,接触比率和双导程蜗轮蜗杆传动运动误差。
蜗杆传动蜗杆传动由蜗杆和蜗轮组成,一般蜗杆为主动件。
蜗杆和螺纹一样有右旋和左旋之分蜗杆传动,分别称为右旋蜗杆和左旋蜗杆。
蜗杆上只有一条螺旋线的称为单头蜗杆,即蜗杆转一周,蜗轮转过一齿,若蜗杆上有两条螺旋线,就称为双头蜗杆,即蜗杆转一周,蜗轮转过两个齿。
由蜗杆与蜗轮互相啮合组成的交错轴间的齿轮传动(图1)。
通常两轴的交错角为90°。
一般蜗杆为主动件,蜗轮为从动件。
蜗杆传动的传动比大,工作平稳,噪声小,结构紧凑,可以实现自锁。
但一般的蜗杆传动效率较低,蜗轮常须用较贵的有色金属(如青铜)制造。
蜗杆传动广泛用于分度机构和中小功率的传动系统。
单级蜗杆传动的传动比常用 8~80。
在分度机构或手动机构中蜗杆传动的传动比可达300,用于传递运动时可达到1500。
蜗杆传动-类型蜗杆传动有多种类型,如表所示。
蜗杆传动圆柱蜗杆传动是蜗杆分度曲面为圆柱面的蜗杆传动。
其中常用的有阿基米德圆柱蜗杆传动和圆弧齿圆柱蜗杆传动(图2)。
①阿基米德蜗杆的端面齿廓为阿基米德螺旋线,其轴面齿廓为直线。
阿基米德蜗杆可以在车床上用梯形车刀加工,所以制造简单,但难以磨削,故精度不高。
在阿基米德圆柱蜗杆传动中,蜗杆与蜗轮齿面的接触线与相对滑动速度之间的夹角很小,不易形成润滑油膜,故承载能力较低。
②弧齿圆柱蜗杆传动是一种蜗杆轴面(或法面)齿廓为凹圆弧和蜗轮齿廓为凸圆弧的蜗杆传动。
在这种传动中,接触线与相对滑动速度之间的夹角较大,故易于形成润滑油膜,而且凸凹齿廓相啮合,接触线上齿廓当量曲率半径较大,接触应力较低,因而其承载能力和效率均较其他圆柱蜗杆传动为高。
蜗杆传动-主要参数各类圆柱蜗杆传动的参数和几何尺寸基本相同。
图3为阿基米德圆柱蜗杆传动的主要参数。
通过蜗杆轴线并垂直于蜗轮轴线的平面,称为中间平面。
在中间平面上,蜗杆的齿廓为直线,蜗轮的齿廓为渐开线,蜗杆和蜗轮的啮合相当于齿条和渐开线齿轮的啮合。
因此,蜗杆传动的参数和几何尺寸计算大致与齿轮传动相同,并且在设计和制造中皆以中间平面上的参数和尺寸为基准。
双导程蜗轮蜗杆减速机的优点介绍双导程蜗轮蜗杆减速机是一种高效的减速机,具有许多优点。
本文将为您介绍这些优点。
1. 高扭矩传递能力双导程蜗轮蜗杆减速机具有高扭矩传递能力,这是由于它的工作原理决定的。
蜗杆作为主动件,螺旋状的蜗轮是被动件,它们之间产生旋转摩擦,从而达到功率传输。
这种设计使得双导程蜗轮蜗杆减速机能够承受更大的扭矩,并且能够输出更大的输出功率。
2. 可靠性高双导程蜗轮蜗杆减速机的设计使得其转速较低,因此它的运转比较平稳,噪音较小,且寿命比较长。
此外,双导程蜗轮蜗杆减速机没有传统减速机的齿轮和链条摩擦,这些零部件容易损坏和磨损,影响传动效率和寿命。
因此,双导程蜗轮蜗杆减速机相对来说更加可靠。
3. 高效率相比于传统减速机,双导程蜗轮蜗杆减速机的效率比较高。
这是因为它的传动过程主要是通过摩擦转换轴的旋转动力,它没有齿轮在传动过程中的摩擦造成的能量损失。
此外,双导程蜗轮蜗杆减速机还采用了精度更高的蜗轮蜗杆副结构,能够有效地减少运动损耗,提高效率。
4. 体积小、重量轻由于双导程蜗轮蜗杆减速机没有传统减速机的齿轮和链条等连接件,这些部件都是比较大,重量也比较重的,而双导程蜗轮蜗杆减速机则采用了紧凑型的结构,因此体积和重量都比较小。
这使得双导程蜗轮蜗杆减速机可以在机器设计上占据较小的空间,也可以减轻机器的重量。
5. 维护成本低双导程蜗轮蜗杆减速机没有齿轮和链条的结构,这些部件在传动过程中容易磨损和故障,并且需要经常更换和维护。
而双导程蜗轮蜗杆减速机的维护成本比较低,主要是因为它的结构相对来说更加简单、紧凑。
此外,双导程蜗轮蜗杆减速机的设计也考虑了易维护,因此在维护方面也比较方便。
结论综上所述,双导程蜗轮蜗杆减速机具有多方面的优点,如高扭矩传递能力、可靠性高、高效率、体积小、重量轻和维护成本低等。
这会让用户在实际应用中更加方便和省心。
双导程蜗杆副中的蜗杆的节距双导程蜗杆副中的蜗杆节距,可能大家脑袋里第一时间就会冒出一堆机械术语,什么蜗杆、节距、导程…听起来像是高大上的东西,实际上嘛,也不过是一些简单的“玩意儿”。
别急,我来给你捋捋。
你要是不懂蜗杆,也许就跟很多人一样,没事儿拿个螺丝刀来拧个东西,或者拧个瓶盖都不觉得啥问题。
可你知道那些平时看不见的东西,背后可都是有学问的。
比方说,蜗杆这个东西,咱们日常看到的,能让两根轴线完全不同的东西互相配合、转动,那就是蜗杆副的“魔力”所在。
对,蜗杆副,不就是一个大哥一个小弟的配合关系。
大哥是蜗杆,小弟是蜗轮。
可在这“双导程蜗杆副”里,蜗杆可是有两条“腿”的——这就是双导程的由来。
也就是说,蜗杆的形状比一般的蜗杆复杂多了,表面上的齿形就像是比平常多出两条螺旋线。
看上去是不是有点像你平时用手搅拌奶茶的那个搅拌器?有两根“搅拌线”,绕着中心轴线转。
这一转动,不仅能减小摩擦,还能让转动更加平稳。
说到蜗杆的节距,其实这就像是你在一个固定的长度里,绕蜗杆转一圈会有多少“齿”的感觉。
看着简单吧?但要是你稍微想象一下,蜗杆的齿有多密,转动多不容易,就会发现这节距的重要性。
节距就决定了蜗杆和蜗轮之间的啮合效果。
是不是有点像一对儿情侣的“默契”?节距太大了,他们俩就会不太合拍,齿轮一转,可能就会咯吱咯吱地卡住;如果节距太小呢?就好像那俩人走得太近了,互相摩擦得太厉害,转得也是不太顺畅。
恰到好处,才是最舒服的。
回到蜗杆副的节距,讲简单点儿,就是蜗杆齿面上每一对相邻齿的间距,它直接影响到蜗杆的传动效果。
这个传动效率,关系着我们机器的“耐操度”。
想象一下,你的手机电池已经坚持不到一小时了,但工作上必须用到,你得一直用它。
你是不是已经开始“咬牙切齿”了?那蜗杆副的节距不合适,也会让机器的工作效率低,动力浪费得厉害。
这个节距,其实并不是一个固定的数值,得根据不同的使用环境来调整。
比如你需要大扭矩的传动,那节距就得偏大,保证齿的啮合力强一点;而如果你想要更高的传动速度,那节距就得适当减小,减少摩擦,速度上得去。
双导程蜗杆传动
双导程蜗杆传动具有改变啮合侧隙的特点,能够始终保持正确的啮合关系;并且结构紧
凑,调整方便,因而在要求连续精确分度的结构中被采用,以便调整啮合侧隙到最小程度。
双导程蜗杆副啮合原理与一般的蜗杆副啮合原理相同,蜗杆的轴向截面仍相当于基本齿条,蜗轮则相当于同它啮合的齿轮。
双导程蜗杆齿的左、右两侧面具有不同的齿距 ( 导程 ) 或者说齿的左、右两侧面具有不同的模数 m(m=t /π ) ,但同一侧齿距则是相等的,因此,该蜗杆的齿厚从一端到另一端均匀地逐渐增厚或减薄,故又称变齿厚蜗杆,可用轴向移动蜗杆的方法来消除或调整啮合间隙。
因为同一侧面齿距相同,没有破坏啮合条件,所以当轴向移动蜗杆后,也能保证良好的啮合。
双导程蜗杆的齿形如图 5-36 所示,图中,、分别为蜗杆左、右侧面轴向齿距;为公
称轴向齿矩;、分别为蜗杆左、右侧面齿形角; S 为齿厚; C 为齿槽宽。
下面介绍
双导程蜗杆传动的特殊参数的选择。
图 5-36 双导程蜗杆齿形
1 .公称模数
双导程蜗杆传动的公称模数 m 可看成普通蜗杆副的轴向模数,用强度计算方法求得,并选取标准值,它一般等于左、右齿面模数的平均值。
当公称模数确定后,公称齿距也随之而确定。
从图 5-36 可知
( 5-9)
2 .齿厚增量系数
齿厚增量系数值为蜗杆轴向移动单位长度内的轴向齿厚变化量,即
(5-10)
值与 m 值一样,是确定其他参数的原始数据,因而在设计中首先要确定值。
选择值时应
考虑以下问题:
(1) 为了补偿一定的侧隙,蜗杆轴向移动长度与成反比。
值大,可使蜗杆轴向尺寸紧凑;
但值过大,则使啮合区过分偏移,同时齿顶变尖,齿槽变窄,从而使蜗轮轮齿 ( 大模数值时 )
发生根切, ( 小模数值时 ) 齿顶变尖。
而值过小,则会增大传动机构的轴向尺寸。
(2) 值与啮合节点有一定的关系,由图 5-37 看出,大模数齿面节点向蜗杆的齿根方向
偏移,而小模数齿面节点向蜗杆的齿顶方向偏移,节点偏移量与的关系为
(5-11) 式中,为蜗轮齿数。
图
5-37 啮合关系图
为了保证啮合质量,点不应超出蜗轮的齿顶高,点不应超出蜗杆的齿顶高,即
(5-12) 式中,为齿顶高系数。
因此,根据式 (5-11) 和式 (5-12) 得
(5-13)
3 .齿厚调整量
齿厚调整量ΔS 是为了补偿制造误差和蜗轮的最大允许磨损量所形成的侧隙而选取的。
一般推荐ΔS=0.3~ 0.5mm 。
对于数控回转工作台,ΔS 值应偏小。
当传递动力时,ΔS 也可选为πmk 。
4 .模数差与节距差
模数差Δm 值为左、右齿面模数与公称模数 m 之差的绝对值。
当已知 m 和值
时,有
(5-14) 因而
(5-15)
(5-16)
同样,节距差Δt 值、左面和右面齿距分别为
(5-17)
设计双导程蜗杆时,还要对齿槽变窄、齿顶变尖、蜗轮根切进行验算。
双导程蜗杆的优点是:啮合间隙可调整得很小,根据实际经验,侧隙调整可以小至 0.01~
0.015mm ,而普通蜗轮副一般只能达 0.03 ~ 0.08mm ,因此,双导程蜗杆副能在较小的侧隙下工作,这对提高数控回转工作台的分度精度非常有利。
由于普通蜗杆是用蜗杆沿蜗轮径向移动来调整啮合侧隙,因而改变了传动副的中心距 ( 中心距的改变会引起齿面接触情况变差,甚至加剧磨损,不利于保持蜗轮副的精度 ) ;而双导程蜗杆是用蜗杆轴向移动来调整啮合侧隙,不会改变传动副的中心距,可避免上述缺点。
双导程蜗杆是用修磨调整环来控制调整量,调整准确,方便可靠;而普通蜗轮副的径向调整量较难掌握,调整时也容易产生蜗杆轴线歪斜。
双导程蜗杆的缺点是:蜗杆加工比较麻烦,在车削和磨削蜗杆左、右齿面时,螺纹传动链要选配不同的两套挂轮,而这两种蜗距往往是烦琐的小数,对于精确配算挂轮很费时;同样,在制造加工蜗轮的滚刀时,应根据双导程蜗杆的参数设计制造,通用性差。