第五章特征值和特征向量 (学生题目简单答案版)
- 格式:pdf
- 大小:422.78 KB
- 文档页数:15
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
特征值与特征向量测试题一、填空题:(每小题5分,共20分)1、设B A ,均为3阶方阵,满足AB B I =+,且A 有特征值0,3,3-,则B 的特征值为 。
2、设A 为n 阶方阵,且0)(=+m I A ,m 为正整数,则=A 。
3、设B A ,均为n 阶方阵,且A 可逆,则AB 与BA 相似,这是因为存在可逆矩阵=P ,使得BA ABP P=-1。
4、若 ⎪⎪⎪⎭⎫ ⎝⎛-111 是矩阵 ⎪⎪⎪⎭⎫ ⎝⎛---2135212b a 的一个特征向量,则=a ,=b 。
二、选择题:(每小题5分,共20分)1、若矩阵A 可逆,则A 的特征值( )(A) 互不相等; (B) 全都相等; (C) 不全为零; (D) 全不为零。
2、已知A 是4阶矩阵,且2)3(=-A I r ,则3=λ是A 的( )特征值。
(A) 一重; (B) 二重; (C) 至少二重; (D) 至多二重。
3、n 阶方阵A 相似于对角阵的充分必要条件是( )(A) A 有n 个互异的特征值;(B) A 有n 个互异的特征向量;(C) 对A 的每个i r 重特征值i λ,有i i r A I r =-)(λ;(D) 对A 的每个i r 重特征值i λ,有i r 个线性无关的特征向量。
4、下列矩阵中,不能与对角阵相似的是( )(A) ⎪⎪⎪⎭⎫ ⎝⎛200110011; (B) ⎪⎪⎪⎭⎫ ⎝⎛201010101; (C) ⎪⎪⎪⎭⎫ ⎝⎛200110101; (D) ⎪⎪⎪⎭⎫ ⎝⎛220010001。
三、解答题:(每小题20分,共60分)1、判断矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-101121002 是否可对角化;若可以,试求出相应的可逆矩阵P 使得AP P 1-为对角矩阵。
2、设三阶实对称矩阵A 的特征值为1,1321==-=λλλ,对应于1λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=1101ξ,求A 。
3、设B A ,均为n 阶方阵,且n B r A r <+)()(,证明B A ,有公共的特征向量。
第五章 矩阵的特征值与特征向量 同步练习(一)1、矩阵⎪⎪⎭⎫ ⎝⎛--6261的特征值是( ) A 、3,221-=-=λλ B 、3,221-==λλC 、3,221=-=λλD 、3,221==λλ2、零为矩阵A 的特征值是A 为不可逆的( )A 、充分条件B 、必要条件C 、充要条件D 、非充分非必要条件3、给定矩阵⎪⎪⎪⎪⎭⎫ ⎝⎛--=32313132M 及向量⎪⎪⎭⎫ ⎝⎛-=56α,对任意的向量⎪⎪⎭⎫ ⎝⎛=y x ,则=M n 。
4、矩阵⎪⎪⎭⎫ ⎝⎛2152的特征值是 。
5、已知矩阵A 有特征值81=λ及对应特征向量⎪⎪⎭⎫ ⎝⎛=111e ,并有特征值22=λ及对应向量⎪⎪⎭⎫⎝⎛-=212e ,则矩阵A= 。
6、⎪⎪⎭⎫ ⎝⎛=21001M ,则_______3120=⎪⎪⎭⎫ ⎝⎛M 。
7、⎪⎪⎭⎫⎝⎛=1221A 的特征值为_____________。
8、求矩阵⎪⎪⎭⎫ ⎝⎛--=32521M 的特征值和特征向量。
9、给定矩阵M=⎪⎪⎭⎫ ⎝⎛1652及向量⎪⎪⎭⎫ ⎝⎛-=92α, (1)求M 的特征值及对应的特征向量;(2)确定实数a,b 使向量可表示为21e b e a +=α;(3)利用(2)中表达式间接计算ααn M M ,3。
10、对下列兔子、狐狐狸模型进行分析:①)1(9.015.02.03.11111≥⎩⎨⎧+=-=----n F R F F R R n n n n n n②)1(1.12.01.01.11111≥⎩⎨⎧+=+=----n F R F F R R n n n n n n(1)分别确定以上模型对应矩阵的特征值;(2)分别确定以上模型最大特征值对应的特征向量,及较小特征值对应的特征向量'e :(3)如果初始种群中兔子与狐狸的数量⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=30100000F R β,分别把第n 年种群中兔子与狐狸的数量⎪⎪⎭⎫ ⎝⎛=n n n F R β表示为和'的线性组合,即'+=b a n β; (4)利用(3)中表达式分析当n 越来越大时, n β的变化趋势。
《线性代数》单元自测题答案第五章 方阵的特征值与特征向量一、 填空题:1.0; 2.36-; 3.6,111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭; 4.4-; 5.ξ1-p . 二、 单选题:1.B ; 2.A ; 3.D ; 4.D ; 5.D .三、计算题1.解:因A 的特征多项式22)1)(1()1)(1(0101010-+=--=---=-λλλλλλλλA E 所以A 的特征值为11-=λ,132==λλ当11-=λ时,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----000101020101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=1011ξ,则属于11-=λ的全体特征向量为11ξk )0(1≠k 。
当132==λλ时,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000101000101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,则属于132==λλ的全体特征向量为3322ξξk k + (2k ,3k 不同时为0)。
2. 解 因A 的特征多项式)1()1()1)(1(32401022322-+=-+=+--+--=-λλλλλλλλA E所以A 的特征值为,121-==λλ13=λ.对于121-==λλ,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000224000224321x x x 得基础解系 ⎪⎪⎪⎭⎫ ⎝⎛-=0211ξ,⎪⎪⎪⎭⎫ ⎝⎛=2012ξ,由于二重特征根121-==λλ的代数重数等于几何重数,故知A 可对角化.对于13=λ,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000424020222321x x x 得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,取()⎪⎪⎪⎭⎫ ⎝⎛-==120002111321ξξξP ,则有⎪⎪⎪⎭⎫ ⎝⎛--=Λ=-1000100011AP P .因此P 为所求的相似变换矩阵,Λ即为所求的对角矩阵.3.解:(1)由已知得4,,5-y 是A 的特征根,于是有 05242424254=----=--x A E , 解得4=x . 从而有 )4()5(1242424212+-=---=-λλλλλλA E ,故可得5=y .(2)当521==λλ时,解0)5(=-X A E ,得基础解系()()T T 101,02121-=-=ξξ.当43-=λ时,解0)4(=--X A E ,得基础解系()T 2123=ξ. 取()⎪⎪⎪⎭⎫ ⎝⎛--==210102211,,321ξξξP , 则Λ=-AP P 1。
第五章 特征值和特征向量 矩阵的对角化答案1.求下列矩阵的特征值和特征向量:(1) 2331-⎛⎫ ⎪-⎝⎭ (2) 311201112-⎛⎫ ⎪ ⎪ ⎪-⎝⎭ (3) 200111113⎛⎫⎪⎪ ⎪-⎝⎭(4) 1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭(5) 452221111-⎛⎫ ⎪-- ⎪ ⎪--⎝⎭ (6) 220212020-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ 【解析】(1) 令2331A -⎛⎫=⎪-⎝⎭,则矩阵A 的特征方程为22337031I A λλλλλ--==--=- 故A的特征值为12λλ==当1λ=时,由1()0I A x λ-=,即120303x x ⎫⎛⎫⎛⎫⎪ ⎪ ⎪ = ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝得其基础解系为(16,1Tx =,因此,11k x (1k 为非零任意常数)是A的对应于1λ=的全部特征向量。
当232λ=时,由2()0I A x λ-=,即12031032x x ⎫⎛⎫⎛⎫⎪ ⎪ ⎪ = ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得其基础解系为(26,1Tx =+,因此,22k x (2k 为非零任意常数)是A的对应于2λ=(2) 令311201112A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则矩阵A 的特征方程为 231121(1)(2)0112I A λλλλλλ---=--=--=--故A 的特征值为121,2λλ==(二重特征值)。
当11λ=时,由1()0I A x λ-=,即123211*********x x x --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭得其基础解系为()10,1,1Tx =,因此,11k x (1k 为非零任意常数)是A 的对应于11λ=的全部特征向量。
当22λ=时,由2()0I A x λ-=,即123111022101100x x x --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭得其基础解系为()21,1,0Tx =,因此,22k x (2k 为非零任意常数)是A 的对应于22λ=的全部特征向量。
第五章矩阵的特征值与特征向量同步练习(二) 1、设21,是矩阵A 的两个不同的特征值,,是A 的分别属于21,的特征向量, 则有与是( )A 、线性相关B 、线性无关C 、对应分量成比例D 、可能有零向量2、矩阵4121M 的特征值为()A 、3,221B 、3,221C 、3,221 D 、3,2213、矩阵1001M 的特征值为____________,对应的特征向量为________________。
4、矩阵2543A 的特征值是_________。
5、给定矩阵d c b a M ,设矩阵M 存在特征值,及其对应的特征向量y x,只有当 ________________时,方程组0y x d c b a才可能有非零解。
6、矩阵123211的特征值是。
7、当矩阵M 有特征值及对应的特征向量,即M ,则有n M 。
8、若矩阵A 有特征向量01i和10j ,且它们对应的特征值分别为1,221,(1)求矩阵A 及其逆矩阵1A ;(2)求逆矩阵1A 的特征值及特征向量;(3)对任意向量y x,求100A 和1A 。
9、自然界生物群的成长受到多种条件因素的影响,比如出生率、死亡率、资源的可利用性与竞争、捕食者的猎杀乃至自然灾害等等。
因此,它们和周边环境是一种既相生又相克的生存关系。
但是,如果没有任何限制,种群也会泛滥成灾。
现假设两个互相影响的种群X ,Y 随时间段变化的数量分别为n n b a ,,有关系式n n n n n nb a b b a a 23211,其中4,611b a ,试分析20个时段后,这两个种群的数量变化趋势。