第五章 矩阵的特征值与特征向量 习题
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。
则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。
特征值与特征向量练习题特征值和特征向量是线性代数中重要的概念,它们在解决实际问题中有着广泛的应用。
下面是一些关于特征值和特征向量的练习题。
1、设矩阵A的元素如下:2 -3 41 -1 10 1 -2矩阵B为A的平方,求B的特征值和特征向量。
2、设矩阵A的元素如下:1 2 34 5 67 8 9矩阵B为A的平方,求B的特征值和特征向量。
3、设矩阵A的元素如下:2 1 00 2 10 0 2矩阵B为A的平方,求B的特征值和特征向量。
4、设矩阵A的元素如下:csharp1 0 00 2 -10 -1 2矩阵B为A的平方,求B的特征值和特征向量。
5、设矩阵A的元素如下:lua1 0 0 00 2 -1 -10 -1 2 -10 -1 -1 2矩阵B为A的平方,求B的特征值和特征向量。
特征值与特征向量特征值和特征向量是线性代数中两个非常重要的概念,它们在许多数学领域中都有广泛的应用,包括解决线性方程组、研究矩阵的性质、以及在机器学习和数据科学中等。
一、特征值特征值是矩阵的一个重要属性,它可以通过对矩阵进行特定的数学操作来得到。
对于一个给定的矩阵A,如果存在一个非零向量v,使得Av = λv对某个标量λ成立,那么我们就说λ是A的特征值,v是对应于特征值λ的特征向量。
特征值的性质可以通过矩阵的特征多项式来研究。
特征多项式f(x) = |xI - A|,其中I是单位矩阵,A是给定的矩阵。
特征多项式的根就是矩阵的特征值。
二、特征向量特征向量是矩阵对应于特征值的向量。
它与特征值有密切的关系,并且在解决线性代数问题中发挥着重要的作用。
设A是n阶方阵,如果存在非零向量v,使得Av = λv对某个标量λ成立,那么我们就说λ是A的特征值,v是对应于特征值λ的特征向量。
特别地,如果λ是矩阵A的特征值,那么对于任何使得|xI - A|= 0成立的x,我们都有(xI - A)v = xv - Av = (x - λ)v,这表明v 也是对应于x的特征向量。
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。
第五章:特征值与特征向量填空题1.1,n A A n 设阶矩阵的元素全为则的个特征值是.123,0n n λλλλ===== 答案:()2.n A kA k λα已知阶矩阵的一个非零特征值为,对应的特征向量为,则:为常数的一个特征值为,对应的特征向量为.,k λα答案:()3.m n A A m λα已知阶矩阵的一个非零特征值为,对应的特征向量为,则:为正整数的一个特征值为,对应的特征向量为.,m λα答案:14.n A A A λα-已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,的一个特征值为,对应的特征向量为.1,αλ答案:5.n A A A λα*已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,的一个特征值为,对应的特征向量为.,A αλ答案:16..n A P P AP λα-已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,的一个特征值为,对应的特征向量为.1P λα-答案:,()()110110117.,m m m m m m m m n A P f x c x c x c x c f x c A c A c A c λα----=++++=++++ 已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,则矩阵多项式的一个特征值为,对应的特征向量为.(),f λα答案:8.T n A A λα已知阶矩阵的一个非零特征值为,对应的特征向量为,则:的一个特征值为.λ答案:9.n A A E λα+已知阶矩阵的一个非零特征值为,对应的特征向量为,则:的一个,特征值为,对应的特征向量为.1,λλ+答案:()210.,A n A A A E n A A E λ**≠+设为阶矩阵,0为的伴随矩阵,为阶单位矩阵.若有特征值,则必有特征值.21,A αλ⎛⎫+ ⎪⎝⎭答案:11.30,20,30,3A A E A E A E A E +=+=+=+=设为阶矩阵,已知则.答案:620012.0020002A B A B λ⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦设,,则矩阵有一个特征值.答案:2111121313.31,2,3,ij ij A A A A a A A A -++=设是阶矩阵,已知是中元素的代数余子式,则.1答案:2015.A n E n A A E λ+设是阶方阵,是阶单位阵,若有特征值,则必有特征值.01λ+答案:[]123123123116.31,1,2,,,,=2,4,A P P AP λλλξξξξξξ-==-=-=设是阶矩阵,有特征值其对应特征向量分别为记,-3则.121-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦答案:()1211117.246,2335A x A x λλ-⎡⎤⎢⎥====⎢⎥⎢⎥--⎣⎦设,有特征值二重,则.2-答案:[]18.1,0,1T T n A n E A αααα=-=-=设,矩阵,为正整数,则.()22n a a -答案:()1122333319.,ij A a A a a a ⨯==++=设为3阶矩阵,其特征值为1,2,3,则.6,6答案:220.1,2,3,1,A A -+=若4阶方阵的特征值为则.答案:[]12221.212,=1,1__________.221T A k k α⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦设矩阵向量,是它的一个特征向量,则12-答案:或1111122.4__________.2345A B A B E --=已知阶矩阵与相似,矩阵的特征值为,,,,则行列式答案:241111111123._____________.11111111A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的非零特征值是4答案:12311024.3=-1==1,=1______.1A A λλλλξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设阶对称矩阵的特征值,属于的特征向量,则100001010⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦答案:25.42,3,4,5_______________.A B B E -=已知阶矩阵与相似,其特征值为,则行列式24答案:()26.0____________.n A r A =若阶方阵有一个特征值为,且为单根,则1n -答案:3227.332,1-23,8___________.A B A A B E *=--=设阶矩阵有个特征值,,则0答案:()131028.410,262A A *-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦设则的特征多项式的一次因式分解式为____________.()2112λλ⎛⎫-- ⎪⎝⎭答案:。
第五章 矩阵的特征值与特征向量 习题1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎪⎭⎫ ⎝⎛=931421111) , ,(321a a a ;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a . 2. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 3. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎪⎭⎫ ⎝⎛----201335212; (2)⎪⎪⎪⎭⎫ ⎝⎛633312321.4. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同.5. 设λ≠0是m 阶矩阵A m ⨯n B n ⨯m 的特征值, 证明λ也是n 阶矩阵BA 的特征值.6. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |.7. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |.8. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化, 求x .9. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;(2)问A 能不能相似对角化?并说明理由.10. 试求一个正交的相似变换矩阵, 将对称阵⎪⎪⎪⎭⎫ ⎝⎛----020212022化为对角阵.11. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.12. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .13. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .14. 设⎪⎪⎪⎭⎫ ⎝⎛-=340430241A , 求A 100.。
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
第五章 练习一 方阵的特征值与特征向量一、填空题1.设3=λ是n 阶方阵A 的一个特征值,则行列式=-E A 32. ⎪⎪⎪⎭⎫ ⎝⎛-=100030002A 的特征值为3.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛----=x A 44174147的特征值12,3321===λλλ,则=x . 二、选择题1.设2=λ是可逆矩阵A 的一个特征值,则矩阵E+13)21(-A 有一个特征值为( ) (A)41 (B)45 (C)5 (D)54 2.设A 为n 阶矩阵,则A 以0为一特征值是A 为不可逆矩阵的( )(A)充分非必要条件 (B)必要非充分条件(C)既非充分也非必要条件 (D)充分必要条件3.设A 为n 阶方阵,则下列结论正确的是( )(A)若A 可逆,则A 对应于λ 的特征向量也是1-A 对应于特征值λ1的特征向量 (B)A 的特征向量的任意线性组合仍为A 的特征向量(C)特征向量由特征值唯一确定(D)设λ是A 特征值,则0)(=-x E A λ的解向量都是A 的特征向量 三、求出矩阵201021111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值与特征向量四、已知T -=)3,2,1(p 是矩阵3212231A a b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭的特征向量,求a , b 和特征向量p 所对应的特征值λ。
五、已知122224242A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,求(1)的特征值和特征向量A ,(2)E A 21--的特征值. 第五章 练习 相似矩阵及对角化一、填空题1.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x 00130011与B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300020001相似,且有B AP P =-1则x = ;P= 2.设n 阶方阵A 有n 个特征值0,1,2,…n-1,且A 与B 相似,则|B+E|=3.设矩阵A ⎪⎪⎪⎭⎫ ⎝⎛-------=12422421x 与对角阵⎪⎪⎪⎭⎫ ⎝⎛-=Λy 45相似,则=x ,=y 二、选择题1. 矩阵A 与B 相似,下列说法正确的是( )(A) E B E A λλ-=- (B)A 与B 有相同的特征值和特征向量(C) A 与B 相似于同一个对角矩阵 (D)对于任意常数t ,A tE - 与B tE -相似2.下列说法错误的是 ( )(A) 矩阵A 与B 可相似对角化为同一个对角矩阵 ,则A 与B 相似(B) A 与B 有相同的特征值, 则A 与B 相似(C) A 所有的k 重特征值都有k 个线性无关的特征向量 ,则A 可对角化.(D ) n 阶方阵A 有n 个不同的特征值是其可对角化的充分非必要条件三、判断下列矩阵能否对角化,若能,化为对角形矩阵(1) ⎪⎪⎪⎭⎫ ⎝⎛--=212044010A (2) ⎪⎪⎪⎭⎫ ⎝⎛---=6116100010A 四、设A=⎪⎪⎪⎭⎫ ⎝⎛----142252001,求n A五、设3阶矩阵A 的特征值为;1,2,2321=-==λλλ对应的特征向量依次为T =)1,1,0(1p T =)1,1,1(2p T =)0,1,1(3p ,求A六、已知3,6321===λλλ是3阶实对称矩阵A 的3个特征值,且对应于332==λλ 的特征向量是 TT -=-=)1,2,1(,)1,0,1(32αα,求A 的对应特征值6的所有特征向量. 七、求一正交相似变换矩阵,将对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=242422221A 对角化.八、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=a a a A 131111的秩为2,当A 的特征值之和最小时,求正交矩阵P,使得AP P T 为对角矩阵.九、证明题1.已知矩阵A 相似于矩阵B,试证:A 可逆,则B 可逆,且1-A 相似于1B -2.已知A 可逆 ,证明: 矩阵AB 相似于BA3.证明:n 阶实对称矩阵A 和B 有相同的特征值,则A 和B 相似.。
第五章 矩阵的特征值与特征向量 习题
1. 试用施密特法把下列向量组正交化:
(1)⎪⎪⎪⎭
⎫ ⎝⎛=931421111) , ,(321a a a ;
(2)⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛---=011101110111) , ,(321a a a . 2. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 3. 求下列矩阵的特征值和特征向量:
(1)⎪⎪⎪⎭
⎫ ⎝⎛----20133
5212; (2)⎪⎪⎪⎭
⎫ ⎝⎛633312321.
4. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同.
5. 设λ≠0是m 阶矩阵A m ⨯n B n ⨯m 的特征值, 证明λ也是n 阶矩阵BA 的特征值.
6. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |.
7. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |.
8. 设矩阵⎪⎪⎪⎭
⎫ ⎝⎛=50413102x A 可相似对角化, 求x .
9. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎪⎭
⎫ ⎝⎛---=2135
212b a A 的一个特征向量.
(1)求参数a , b 及特征向量p 所对应的特征值;
(2)问A 能不能相似对角化?并说明理由.
10. 试求一个正交的相似变换矩阵, 将对称阵⎪⎪⎪⎭
⎫ ⎝⎛----020212022化为对角阵.
11. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭
⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.
12. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .
13. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .
14. 设⎪⎪⎪⎭
⎫ ⎝⎛-=340430241A , 求A 100.。