特征值特征向量复习题
- 格式:doc
- 大小:130.00 KB
- 文档页数:3
考研数学一(矩阵的特征值与特征向量)-试卷1(总分76,考试时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1. 设A为n阶可逆矩阵,λ是A的一个特征值,则伴随矩阵A*的一个特征值是A. λ-1|A|n-1.B. λ-1|A|.C. λ|A|.D. λ|A|n-1.2. 设A=2是可逆矩阵A的一个特征值,则+E的一个特征值是A. B.C. D.3. 设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是A. α1+3α2.B. α1一α2.C. α1+α3.D. 2α3.4. 设α0是A属于特征值λ0的特征向量,则α0不一定是其特征向量的矩阵是A. (A+E)2.B. 一2A.C. A T.D. A*.5. 下列矩阵中不能相似对角化的是A. B.C. D.6. 设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是A. A的特征值只有零.B. A必不能对角化.C. E+A+A2+…+Am-1必可逆.D. A只有一个线性无关的特征向量.2. 填空题1. 设A是n阶矩阵,r(A)<n,则A必有特征值__________,且其重数至少是__________.2. 设A是n阶可逆矩阵,A是A的特征值,则(A*)2+E必有特征值__________.3. 已知-2是A=的特征值,则x=__________.4. 设A是秩为2的3阶实对称矩阵,且A2+5A=0,则A的特征值是__________.5. 已知α=(1,1,一1)T是矩阵A=的特征向量,则x=__________.6. 设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量__________.7. 设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,一1,1)T,则λ=2的特征向量是__________.8. 已知A=相似,则x=__________,y=__________.9. 已知矩阵A=有两个线性无关的特征向量,则a=__________.3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
考研数学一-矩阵的特征值和特征向量、线性代数二次型(一)(总分:52.00,做题时间:90分钟)一、选择题(总题数:27,分数:27.00)1.设A为n×m实矩阵,r(A)=n,则(A) AA T的行列式值不为零. (B) AA T必与单位矩阵相似.(C) A T A的行列式值不为零. (D) A T A必与单位矩阵相似.(分数:1.00)A.B.C.D.2.下列结论正确的是(A) 方阵A与其转置矩阵A T有相同的特征值,从而有相同的特征向量.(B) 任意两个同阶的对角矩阵都可以相似于同一个对角矩阵.(C) 对应于实矩阵的相异特征值的实特征向量必是正交的.(D) 设P T AP=B,若A为正定矩阵,|P|≠0,则B必为正定矩阵.(分数:1.00)A.B.C.D.3.设n(n≥2)阶矩阵A的行列式|A|=a≠0,λ是A的一个特征值,A*为A的伴随矩阵,则A*的伴随矩阵(A*)*的一个特征值是(A) λ-1a n-1. (B) λ-1a n-2. (C) λa n-2. (D) λa n-1.(分数:1.00)A.B.C.D.4.设A为m×n实矩阵,r(A)=n,则(A) A T A必合同于n阶单位矩阵. (B) AA T必等价于m阶单位矩阵.(C) A T A必相似于n阶单位矩阵. (D) AA T是m阶单位矩阵.(分数:1.00)A.B.C.D.5.设A为n阶实对称矩阵,B为n阶可逆矩阵,Q为n阶正交矩阵,则下列矩阵与A有相同特征值的是(A) B-1Q T AQB. (B) (B-1)T Q T AQB-1.(C) B T Q T AQB. (D) BQ T AQ(B T)-1.(分数:1.00)A.B.C.D.6.设线性方程组(λE-A)x=0的两个不同解向量是ξ1,ξ2,则矩阵A的对应于特征值λ的特征向量必是(A) ξ1. (B) ξ2. (C) ξ1-ξ2. (D) ξ1+ξ2.(分数:1.00)A.B.C.D.7.设α,β是n维列向量,αTβ≠0,n阶方阵A=E+αβT(n≥3),则在A的n个特征值中,必然(A) 有n个特征值等于1. (B) 有n-1个特征值等于1.(C) 有1个特征值等于1. (D) 没有1个特征值等于1.(分数:1.00)A.B.C.D.8.二次型f(x1,x2,x3)=(x1-2x2)2+(x1-2x3)2+(x2-x3)2的规范形是1.00)A.B.C.D.9.设A为n阶实对称矩阵,则下列结论正确的是(A) A的n个特征向量两两正交.(B) A的n个特征向量组成单位正交向量组.(C) A的k重特征值λ0有r(λ0E-A)=n-k.(D) A的k重特征值λ0有r(λ0E-A)=k.(分数:1.00)A.B.C.D.10.设A为n阶矩阵,则在下列条件中,不是“A的特征值为-1”的充分条件的是(A) A2=E. (B) r(A+E)<n.(C) A的各行元素之和均为-1. (D) A T=-A,且1是A的特征值.(分数:1.00)A.B.C.D.11.设A,B为实对称矩阵,则A合同于B,如果(A) r(A)=r(B). (B) A,B为同型矩阵.(C) A,B的正惯性指数相等. (D) 上述三项同时成立.(分数:1.00)A.B.C.D.12. 1.00)A.B.C.D.13.设二次型f(x1,x2,…,x n)=x T Ax,其中A T=A,x=(x1,x2,…,x n)T,则f为正定二次型的充分必要条件是(A) f的负指数是0. (B) 存在正交矩阵Q,使Q T AQ=E.(C) f的秩为n. (D) 存在可逆矩阵C,使A=C T C.(分数:1.00)A.B.C.D.14.已知A,B均为n阶正定矩阵,则下列结论不正确的是(A) A+B,A-B,AB是正定矩阵.(B) AB的特征值全大于零.(C) 若AB=BA,则AB是正定矩阵.(D) 对任意正常数k与l,kA+lB为正定矩阵.(分数:1.00)A.B.C.D.15.设A为n阶矩阵,则下列结论正确的是(A) 矩阵A有n个不同的特征值.(B) 矩阵A与A T有相同的特征值和特征向量.(C) 矩阵A的特征向量α1,α2的线性组合c1α1+c2α2仍是A的特征向量.(D) 矩阵A对应于不同特征值的特征向量线性无关.(分数:1.00)A.B.C.D.16.设A为n阶矩阵,则下列命题①设A为n阶实可逆矩阵,如果A与-A合同,则n必为偶数②若A与单位矩阵合同,则|A|>0⑧若|A|>0,则A与单位矩阵合同④若A可逆,则A-1与A T合同中正确的个数是(A) 3个. (B) 2个. (C) 1个. (D) 0个.(分数:1.00)A.B.C.D.17.设λ1,λ2是n阶矩阵A的特征值,α2,α2分别是A的对应于λ1,λ2的特征向量,则(A) 当λ1=λ2时,α1与α2必成比例.(B) 当λ1=λ2时,α1与α2必不成比例.(C) 当λ1≠λ2时,α1与α2必成比例.(D) 当λ1≠λ2时,α1与α2必不成比例.(分数:1.00)A.B.C.D.18.设A=(a ij)n×n为正定矩阵,则下列结论不正确的是(A) a ij≥0(i=1,2,…,n). (B) A-1为正定矩阵.(C) A*为正定矩阵. (D) 对任意正整数k,A k为正定矩阵.(分数:1.00)A.B.C.D.19.设n阶矩阵A与对角矩阵Λ相似,则下述结论中不正确的是(A) A-kE~Λ-kE(k为任意常数). (B) A m~Λm(m为正整数).(C) 若A可逆,则A-1~Λ-1. (D) 若A可逆,则A~E.(分数:1.00)A.B.C.D.20. 1.00)A.B.C.D.21.设n阶矩阵A可逆,α是A的属于特征值A的特征向量,则下列结论中不正确的是(A) α是矩阵-2A的属于特征值-2λ的特征向量.(B) α(C) α是矩阵A* 1.00)A.B.C.D.22.设A,B为n阶矩阵,则A与B相似的充分必要条件是(A) A,B都相似于对角矩阵. (B) |λE-A|=|λE-B|.(C) 存在正交矩阵Q,使得Q-1AQ=B. (D) 存在可逆矩阵P,使得AB T=P T B.(分数:1.00)A.B.C.D.23.1.00)A.B.C.D.24.正定实二次型的矩阵必是(A) 实对称矩阵且所有元素为正数. (B) 实对称矩阵且对角线上元素为正数.(C) 实对称矩阵且各阶顺序主子式为正数. (D) 实反对称矩阵且行列式值为正数.(分数:1.00)A.B.C.D.25.n阶矩阵A可对角化的充分必要条件是(A) A有n个相异的特征值.(B) A T有n个相异的特征值.(C) A有n个相异的特征向量.(D) A的任一特征值的重数与其对应的线性无关特征向量的个数相同.(分数:1.00)A.B.C.D.26.设矩阵A与B相似,则必有(A) A,B同时可逆或不可逆. (B) A,B有相同的特征向量.(C) A,B均与同一个对角矩阵相似. (D) 矩阵λE-A与λE-B相等.(分数:1.00)A.B.C.D.27.A既相似又合同的是1.00)A.B.C.D.二、填空题(总题数:18,分数:25.00)28. 1.00)填空项1:__________________29.若二次型f(x1,x2,x3 1.00)填空项1:__________________30.已知α=(1,3,2)T,β=(1,-1,2)T,B=αβT,苦矩阵A,B相似,则(2A+E)*的特征值为______.(分数:1.00)填空项1:__________________31.设-1,5,λ 3.00)填空项1:__________________32.设n阶方阵A的各列元素之和都是1,则A的特征值是______.(分数:1.00)填空项1:__________________33.设AP=PB 2.00)填空项1:__________________34.设A是2阶实对称矩阵,λ1,λ2是A的两个不同的特征值,ξ1,ξ2是分别对应于λ1,λ2的单位特征向量,则矩阵B=A+ξ 1.00)填空项1:__________________35.设A为n阶可相似对角化的矩阵,且r(A-E)=r<n,则A必有特征值λ=______,且其重数为______,其对应的线性无关的特征向量有______个.(分数:3.00)填空项1:__________________36.设λ1,λ2是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ1的一个单位特征向量,则矩阵B=A-λ1ααT的两个特征值为______.(分数:1.00)填空项1:__________________37.设A为n阶方阵.A≠E,且r(A+3E)+r(A-E)=n,则A的一个特征值是 1,(分数:1.00)填空项1:__________________38. 2.00)填空项1:__________________39.若实对称矩阵A 1.00)填空项1:__________________40.若二次型1.00)填空项1:__________________41. 1.00)填空项1:__________________42. 2.00)填空项1:__________________43.设2阶矩阵A的特征值为λ1=1,λ2=2,已知B=A2-3A+4E,则B=______.(分数:1.00)填空项1:__________________44.设A为n阶方阵,且A2-5A+6E=0,其中E为单位矩阵,则A的特征值只能是______.(分数:1.00)填空项1:__________________45. 1.00)填空项1:__________________。
考研数学一(矩阵的特征值和特征向量)-试卷1(总分:54.00,做题时间:90分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.设矩阵A A的三个特征值是( )(分数:2.00)A.1,0,-2.B.1,1,-3.C.3,0,-2.D.2,0,-3.√解析:解析:根据特征值的性质:∑λi=∑a ii.现在∑a ii=1+(-3)+1=-1,故可排除选项C.显然,矩阵A中第2、3两列成比例,易知行列式|A|=0,故λ=0必是A的特征值,因此可排除选项B.对于选项A和选项D,可以用特殊值法,由于说明λ=1不是A矩阵的特征值.故可排除选项A.所以应选D.3.已知A是4阶矩阵,A *是A的伴随矩阵,若A *的特征值是1,-1,2,4,那么不可逆矩阵是( ) (分数:2.00)A.A-EB.2A-EC.A+2E √D.A-4E解析:解析:因为A *的特征值是1,-1,2,4,所以|A *|=-8,又|A *|=|A|n-1,因此|A|3=-8,于是|A|=-2.那么,矩阵A的特征值是:-2,2,-1,.因此,A-E的特征值是-3,1,-2,,因为特征值非0,故矩阵A-E可逆.同理可知,矩阵A+2E的特征值中含有0,所以矩阵A+2E不可逆.所以应选C.4.已知A是n阶可逆矩阵,那么与A有相同特征值的矩阵是( )(分数:2.00)A.A T√B.A 2C.A -1D.A-E解析:解析:由于|λE-A T|=|(λE-A) T|=|λE-A|,A与A T有相同的特征多项式,所以A 与A T有相同的特征值.由Aα=λα,α≠0可得到: A 2α=λ2α,A -1α=λ-1α,(A-E)α=(λ-1)α,说明A 2、A -1、A-E与A的特征值是不一样的(但A的特征向量也是它们的特征向量).所以应选A.5.已知α=(1,-2,3) T是矩阵A=( )(分数:2.00)A.a=-2,b=6.√B.a=2,b=-6.C.a=2,b=6.D.a=-2,b=-6.解析:解析:设α是矩阵A属于特征值λ的特征向量,按定义有即有λ=-4,a=-2,b=6,故应选A.6.设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A 2 (2)P -1 AP (3)A T (4)E- A α肯定是其特征向量的矩阵共有( )(分数:2.00)A.1个B.2个√C.3个D.4个解析:解析:由Aα=λα,α≠0,有A 2α=A(λα)=λAα=λ2α,α≠0,即α必是A 2属于特征值λ2的特征向量.又知α必是矩阵E-A属于特征值1-λ的特征向量.关于(2)和(3)则不一定成立.这是因为 (P -1 AP)(P -1α)=P -1 Aα=λP -1α,按定义,矩阵P -1 AP的特征向量是P -1α.因为P -1与α不一定共线,因此α不一定是P -1 AP的特征向量,即相似矩阵的特征向量是不一样的.线性方程组(λE-A)χ=0与(λE-A T )χ=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A T的特征向量.所以应选B.7.设A是n阶矩阵,下列命题中正确的是( )(分数:2.00)A.若α是A T的特征向量,那么α是A的特征向量.B.若α是A *的特征向量,那么α是A的特征向量.C.若α是A 2的特征向量,那么α是A的特征向量.D.若α是2A的特征向量,那么α是A的特征向量.√解析:解析:如果α是2A的特征向量,即(2Aα)=λα,α≠0.那么Aα=λα,所以α是矩阵A属于特征值λ的特征向量.由于(λE-A)χ=0与(λE-A T )χ=0不一定同解,所以α不一定是A T的特征向量.例如上例还说明当矩阵A不可逆时,A *的特征向量不一定是A的特征向量;A 2的特征向量也不一定是A的特征向量.所以应选D.8.已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A 2α线性无关,而A 3α=3Aα-2A 2α,那么矩阵A属于特征值λ=-3的特征向量是( )(分数:2.00)A.αB.Aα+2αC.A 2α-Aα√D.A 2α+2Aα-3α解析:解析:因为A 3α+2A 2α-3Aα=0.故 (A+3E)(A 2α-Aα)=0=0(A 2α-Aα),因为α,Aα,A 2α线性无关,那么必有A 2α-Aα≠0,所以A 2α-Aα是矩阵A+3E属于特征值λ=0的特征向量,即矩阵A属于特征值λ=-3的特征向量.所以应选C.二、填空题(总题数:8,分数:16.00)9.设三阶方阵A的特征值分别为-2,1,1,且B与A相似,则|2B|= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:-16)解析:解析:因为相似矩阵有相同的特征向量,矩阵对应的行列式等于特征向量的乘积,因此有|2B|=2 3=8×(-2)=-16.10.设3阶矩阵A的特征值分别为1,2,2,E为3阶单位矩阵,则|4A -1-E|= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:3)解析:解析:根据已知条件A的特征值为1,2,2,A -1的特征值为1,4A -1-E的特征值为3,1,1,所以|4A -1-E|=3×1×1=3.11.设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2 ),则P -1 AP= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因为3α3,α1,2α3分别为A的对应特征值3,1,2的特征向量,所以P -1AP=12.已知A有一个特征值-2,则B=A 2+2E必有一个特征值是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:6)解析:解析:因为λ=2是A的特征值,所以根据特征值的性质,λ2+2=(-2) 2+2=6是B=A 2+2E的特征值.13.设A是n阶矩阵,λ=2是A的一个特征值,则2A 2-3A+5E必定有特征值 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:7)解析:解析:如果λ是A的一个特征值,α是对应于λ的一个特征向量,则Aα=λα,因此有 A 2α=A(λα)=λAα=λ2 a.因此可知 (2A 2-3A+5E)α=2A 2α-3Aα+5α=(2λ2-3λ+5)α,所以2×2 2-3×2+5=7一定是2A 2-3A+5E的一个特征值.14.设A是3阶矩阵,且各行元素的和都是5,则矩阵A一定有特征值 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:5)解析:解析:已知各行元素的和都是5,即=5,化为矩阵形式,可得满足A一定有一个特征值为5.15.已知A= A *是A的伴随矩阵,那么A *的特征值是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:1,7,7)解析:解析:根据矩阵A的特征多项式可得矩阵A的特征值为7,1,1.又因为|A|=λi,可得|A|=7.因为如果Aα=λα,则有A *α=α,因此A *的特征值是1,7,7.16.矩阵A 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:2,1解析:解析:|λE-A|==(λ-2)(λ-1 )(λ-1+),所以A的特征值为λ1=2,λ2 1+,λ3=1-三、解答题(总题数:11,分数:22.00)17.解答题解答应写出文字说明、证明过程或演算步骤。
《 特征值与特征向量》习题21.求矩阵M =⎣⎢⎡⎦⎥⎤-1 0 5 6的特征值和特征向量.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求另一个特征值及其对应的一个特征向量.3. 已知矩阵M =⎣⎢⎡⎦⎥⎤ 1 -2-1 -3,向量α=⎣⎢⎡⎦⎥⎤ 3-5,β=⎣⎢⎡⎦⎥⎤24.(1)求向量2α+3β在矩阵M 表示的变换作用下的象;(2)向量γ=⎣⎢⎡⎦⎥⎤12是矩阵M 的特征向量吗为什么4. 已知矩阵A =⎣⎢⎡⎦⎥⎤12-14,设向量β=⎣⎢⎡⎦⎥⎤74,试计算A 5β的值. 5. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,其中a ∈R ,若点P (1,1)在矩阵A 的变换下得到点P ′(0,-3)(1)求实数a 的值;(2)求矩阵A 的特征值及特征向量. 6. 已知矩阵A =⎣⎢⎡⎦⎥⎤3 3cd ,若矩阵A 属于特征值6的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量α2=⎣⎢⎡⎦⎥⎤3-2,求矩阵A ,并写出A 的逆矩阵.7. 已知矩阵A 对应的变换是先将某平面图形上的点的横坐标保持不变,纵坐标变为原来的2倍,再将所得图形绕原点按顺时针方向旋转90°.(1)求矩阵A 及A 的逆矩阵B ;(2)已知矩阵M =⎣⎢⎡⎦⎥⎤3324,求M 的特征值和特征向量;(3)若α=⎣⎢⎡⎦⎥⎤81在矩阵B 的作用下变换为β,求M 50β.(结果用指数式表示)8. 已知二阶矩阵M 的一个特征值λ=8及与其对应的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4).(1)求矩阵M ;(2)求矩阵M 的另一个特征值及与其对应的另一个特征向量α2的坐标之间的关系; (3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.9. 给定矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ 23-13-13 23,N =⎣⎢⎡⎦⎥⎤2 11 2及向量α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1. (1)求证M 和N 互为逆矩阵;(2)求证α1和α2都是矩阵M 的特征向量.10.给定矩阵M =⎣⎢⎡⎦⎥⎤2561及向量α=⎣⎢⎡⎦⎥⎤-2 9. (1)求矩阵M 的特征值及与其对应的特征向量α1,α2; (2)确定实数a ,b ,使向量α可以表示为α=a α1+b α2; (3)利用(2)中的表达式计算M 3α,M nα; (4)从(3)中的运算结果,你能发现什么参考答案1.【解】 矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ+1 0-5 λ-6=(λ+1)(λ-6).令f (λ)=0,解得矩阵M 的特征值λ1=-1,λ2=6.将λ1=-1代入方程组⎩⎪⎨⎪⎧ ?λ+1?x +0·y =0,-5x +?λ-6?y =0,易求得⎣⎢⎡⎦⎥⎤7-5为属于λ1=-1的一个特征向量.将λ2=6代入方程组⎩⎪⎨⎪⎧?λ+1?x +0·y =0,-5x +?λ-6?y =0,易求得⎣⎢⎡⎦⎥⎤01为属于λ2=6的一个特征向量.综上所述,M =⎣⎢⎡⎦⎥⎤-10 56的特征值为λ1=-1,λ2=6,属于λ1=-1的一个特征向量为⎣⎢⎡⎦⎥⎤7-5,属于λ2=6的一个特征向量为⎣⎢⎡⎦⎥⎤01.2.【解】 矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2-2 λ-x =(λ-1)(λ-x )-4因为λ1=3为方程f (λ)=0的一根,所以x =1 由(λ-1)(λ-1)-4=0得λ2=-1,设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则由⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0得x =-y令x =1,则y =-1.所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.3. 【解】 (1)因为2α+3β=2⎣⎢⎡⎦⎥⎤ 3-5+3⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤12 2,所以M (2α+3β)=⎣⎢⎡⎦⎥⎤1 -2-1 -3⎣⎢⎡⎦⎥⎤12 2=⎣⎢⎡⎦⎥⎤ 8-18,所以向量2α+3β在矩阵M 表示的变换作用下的象为⎣⎢⎡⎦⎥⎤8-18. (2)向量γ=⎣⎢⎡⎦⎥⎤12不是矩阵M 的特征向量.理由如下:Mγ=⎣⎢⎡⎦⎥⎤ 1 -2-1 -3⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤-3-7,向量⎣⎢⎡⎦⎥⎤-3-7与向量γ=⎣⎢⎡⎦⎥⎤12不共线,所以向量γ=⎣⎢⎡⎦⎥⎤12不是矩阵M 的特征向量. 4. 【解】 矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -21 λ-4=λ2-5λ+6=0,解得λ1=2,λ2=3.当λ1=2时,得α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11,由β=m α1+n α2,得⎩⎪⎨⎪⎧2m +n =7m +n =4,得m =3,n =1, ∴A 5β=A 5(3α1+α2) =3(A 5α1)+A 5α2 =3(λ51α1)+λ52α2 =3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.5.【解】 (1)∵⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤ 0-3,∴⎣⎢⎡⎦⎥⎤ 0a +1=⎣⎢⎡⎦⎥⎤ 0-3, ∴a =-4.(2)∵A =⎣⎢⎡⎦⎥⎤1 -1-4 1,∴f (λ)=⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=λ2-2λ-3.令f (λ)=0,得λ1=-1,λ2=3,对于特征值λ1=-1,解相应的线性方程组⎩⎪⎨⎪⎧-2x +y =04x -2y =0得一个非零解⎩⎪⎨⎪⎧x =1y =2,因此α1=⎣⎢⎡⎦⎥⎤12是矩阵A 的属于特征值λ1=-1的一个特征向量.对于特征值λ2=3,解相应的线性方程组⎩⎪⎨⎪⎧2x +y =04x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1y =-2,因此α2=⎣⎢⎡⎦⎥⎤1-2是矩阵A 的属于特征值λ2=3的一个特征向量.∴矩阵A 的特征值为λ1=-1,λ2=3,属于特征值λ1=-1,λ2=3的特征向量分别为⎣⎢⎡⎦⎥⎤12,⎣⎢⎡⎦⎥⎤1-2.6. 【解】 由矩阵A 属于特征值6的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,可知⎣⎢⎡⎦⎥⎤33cd ⎣⎢⎡⎦⎥⎤11=6⎣⎢⎡⎦⎥⎤11,所以c +d =6,①由矩阵A 属于特征值1的一个特征向量α2=⎣⎢⎡⎦⎥⎤3-2, 可知⎣⎢⎡⎦⎥⎤3 3cd ⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤3-2,所以3c -2d =-2.② 联立①②可得⎩⎪⎨⎪⎧c +d =6,3c -2d =-2,解得⎩⎪⎨⎪⎧c =2,d =4,即A =⎣⎢⎡⎦⎥⎤3 32 4,A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤ 23-12-13 12. 7.【解】 (1)A =⎣⎢⎡⎦⎥⎤ 01-1 0⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤ 02-10;B =A -1=⎣⎢⎢⎡⎦⎥⎥⎤0 -112 0. (2)设M 的特征值为λ,则由条件得⎪⎪⎪⎪⎪⎪λ-3 -3 -2 λ-4=0,即(λ-3)(λ-4)-6=λ2-7λ+6=0. 解得λ1=1,λ2=6.当λ1=1时,由⎣⎢⎡⎦⎥⎤3 32 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x y , 得M 属于1的特征向量为α1=⎣⎢⎡⎦⎥⎤3-2;当λ2=6时,由⎣⎢⎡⎦⎥⎤3 324⎣⎢⎡⎦⎥⎤x y =6⎣⎢⎡⎦⎥⎤x y , 得M 属于6的特征向量为α2=⎣⎢⎡⎦⎥⎤11.(3)由Bα=β,得β=⎣⎢⎢⎡⎦⎥⎥⎤0 -112 0⎣⎢⎡⎦⎥⎤81=⎣⎢⎡⎦⎥⎤-1 4, 设⎣⎢⎡⎦⎥⎤-1 4=m α1+n α2=m ⎣⎢⎡⎦⎥⎤ 3-2+n ⎣⎢⎡⎦⎥⎤11 =⎣⎢⎡⎦⎥⎤ 3m +n -2m +n , 则由⎩⎪⎨⎪⎧3m +n =-1,-2m +n =4.解得⎩⎪⎨⎪⎧m =-1,n =2.所以β=-α1+2α2. 所以M 50β=M 50(-α1+2α2) =-M 50α1+2M 50α2=-⎣⎢⎡⎦⎥⎤ 3-2+2×650×⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤2×650-32×650+2. 8.【解】 (1)设矩阵M =⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎪⎨⎪⎧a +b =8,c +d =8.由题意得⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4.联立以上两方程组可解得⎩⎪⎨⎪⎧a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6244.(2)由(1)知矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)(λ-4)-8=λ2-10λ+16.令f (λ)=0,解得矩阵M 的另一个特征值λ=2.设矩阵M 的属于特征值2的一个特征向量α2=⎣⎢⎡⎦⎥⎤x y ,则Mα2=⎣⎢⎡⎦⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0.(3)设点(x ,y )是直线l 上的任一点,其在矩阵M 的作用下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6 24 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎪⎨⎪⎧x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程并化简得x ′-y ′+2=0,即直线l ′的方程为x -y +2=0.9. 【证明】 (1)因为MN =⎣⎢⎢⎡⎦⎥⎥⎤ 23 -13-13 23⎣⎢⎡⎦⎥⎤2 11 2=⎣⎢⎡⎦⎥⎤1 00 1,NM =⎣⎢⎡⎦⎥⎤2 11 2⎣⎢⎢⎡⎦⎥⎥⎤ 23 -13-13 23=⎣⎢⎡⎦⎥⎤1001,所以M 和N 互为逆矩阵.(2)向量α1=⎣⎢⎡⎦⎥⎤11在矩阵M 的作用下,其象与其共线,即⎣⎢⎢⎡⎦⎥⎥⎤ 23 -13-13 23⎣⎢⎡⎦⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤1313=13⎣⎢⎡⎦⎥⎤11,向量α2=⎣⎢⎡⎦⎥⎤ 1-1在矩阵M 的作用下,其象与其共线,即⎣⎢⎢⎡⎦⎥⎥⎤ 23-13-13 23⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤ 1-1,所以α1和α2都是M 的特征向量. 10.【解】 (1)矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -5-6 λ-1=(λ-2)(λ-1)-30=(λ-7)(λ+4).令f (λ)=0,解得矩阵M 的特征值λ1=-4,λ2=7.易求得属于特征值λ1=-4的一个特征向量α1=⎣⎢⎡⎦⎥⎤-5 6,属于特征值λ2=7的一个特征向量α2=⎣⎢⎡⎦⎥⎤11.(2)由(1)可知⎣⎢⎡⎦⎥⎤-2 9=a ⎣⎢⎡⎦⎥⎤-5 6+b ⎣⎢⎡⎦⎥⎤11,解得a =1,b =3,所以α=α1+3α2.(3)M 3α=M 3(α1+3α2)=M 3α1+3M 3α2=(-4)3×⎣⎢⎡⎦⎥⎤-5 6+3×73×⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤43×5+3×73-43×6+3×73. M n α=M n (α1+3α2)=M nα1+3M nα2=(-4)n×⎣⎢⎡⎦⎥⎤-5 6+3×7n×⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤?-1?n +1×4n ×5+3×7n?-4?n ×6+3×7n . (4)在M nα的结果中,随着n 的增加,特征向量α1对结果的影响越来越小.。
特征值与特征向量练习题在线性代数中,特征值与特征向量是重要的概念。
特征值与特征向量的研究对于解决矩阵和线性变换的问题具有重要意义。
本文将为你提供一些特征值与特征向量的练习题,帮助你加深对这些概念的理解。
练习题一:考虑以下矩阵A:A = | 3 4 || 2 1 |问题一:找出矩阵A的特征值和对应的特征向量。
解答一:首先,我们需要找到矩阵A的特征值λ,通过求解矩阵A的特征方程来得到。
特征方程的形式为| A-λI |=0,其中I是单位矩阵。
我们可以写出矩阵A-λI的形式:A-λI = | 3-λ 4 || 2 1-λ |计算行列式并置为零得到特征方程:(3-λ)(1-λ)-(4)(2) = 0展开并整理方程,得到二次方程:λ^2 - 4λ - 5 = 0解方程,得到特征值λ1=5和λ2=-1。
接下来,我们需要找到对应于特征值λ1和λ2的特征向量。
我们可以通过解线性方程组(A-λI)x=0,来得到特征向量。
首先,对于特征值λ1=5,我们可以得到线性方程组:(-2)x1 + 4x2 = 02x1 - 4x2 = 0解方程组,得到x1=2和x2=1。
因此,特征向量v1=(2,1)。
然后,对于特征值λ2=-1,我们可以得到线性方程组:4x1 + 4x2 = 02x1 + 2x2 = 0解方程组,得到x1=-1和x2=1。
因此,特征向量v2=(-1,1)。
练习题二:考虑以下对称矩阵B:B = | 2 -1 || -1 2 |问题二:找出对称矩阵B的特征值和对应的特征向量。
解答二:由于对称矩阵的特征值与特征向量具有一些特殊的性质,我们可以利用这些性质来求解。
首先,我们可以通过求解特征方程来得到矩阵B的特征值。
特征方程的形式为| B-λI |=0,其中I是单位矩阵。
我们可以写出矩阵B-λI的形式:B-λI = | 2-λ -1 || -1 2-λ |计算行列式并置为零得到特征方程:(2-λ)(2-λ)-(-1)(-1) = 0展开并整理方程,得到二次方程:λ^2 - 4λ + 3 = 0解方程,得到特征值λ1=1和λ2=3。
特征值特征向量复习题
一、填空
1. 已知三阶方阵A 的三个特征值为1,-2,-3,则=A , 1-A 的特征值为 ,T A 的特征值为 , *A 的特征值为 。
2. k A k ,0=为正整数,则A 的特征值 。
3. A A =2,则A 的特征值为 。
4. ⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛43213122与 x y 相似,则=x ,=y 。
5. n 阶零矩阵的全部特征向量是 。
6. 若I A ~,则A = 。
7. 若矩阵A 有一个特征值为-1,则=+I A 。
8. 已知三阶方阵A 的特征值为1,2,2,若A 不能对角化,则()=-A I r ,()=-A I r 2 。
若A 能对角化,则()=-A I r ,()=-A I r 2 。
9. 已知三阶方阵A 的行列式6=A ,A 有一个特征值为-2,则*A 必有一个特征值为 ,I A A A 88423+++必有一个特征值为 ,=+++I A A A 88423 。
10. 已知三阶方阵A 的特征值为-1,1,2,则I A A 22-+的特征值为 ,
=-+I A A 22 。
11. 已知三阶方阵A 的行列式-2,*A 有一个特征值为6,则1-A 必有一个特征值为 ,A 必有一个特征值为 ,*135A A --必有一个特征值为 ,A A 351--必有一个特征值为 。
12. 设n 阶方阵A 的n 个特征值为1,2,…,n ,则=+I A 。
13. 已知三阶方阵A 的特征值为-1,1,2,它们对应的特征向量分别为321,,X X X ,
令()312,,X X X Q =,则AQ Q 1-= 。
14. 若0.5不是方阵A 的特征值,则A I 2- 可逆矩阵。
(填是或不是)
15. 设n 阶矩阵A 有特征值2,且I A kA 862=+,则=k 。
二、选择题
1. 设A 为n 阶方阵,以下结论中,( )成立。
A . 若A 可逆,则矩阵A 的属于特征值λ的特征向量也是矩阵1-A 的属于特征
值1-λ的特征向量。
B . A 特征向量是方程O X A I =-)(λ的全部解。
C . A 的特征向量的线性组合仍为的A 的特征向量的。
D . A 与T A 有相同的特征向量。
2. 设⎪⎪⎪⎭
⎫ ⎝⎛-=10021321x A ,已知A 的特征值为2,1,3,则x=( )
A . -2 B. 3 C. 4 D. –1
3. 已知矩阵⎪⎪⎭⎫ ⎝⎛-x 123022,有一个特征向量⎪⎪⎭
⎫ ⎝⎛-35,则x=( )
A . -18 B. -16 C. –14 D. –12
4. 若B A ~,则有( )
A .
B I A I -=-λλ B. B A =
C .对于λ,矩阵A 与B 有相同的特征向量
D. A 与B 均与一个对角阵相似
三、计算题
1. 求⎪⎪⎪⎭
⎫ ⎝⎛----=020212022A 的特征值及对应的特征向量。
2. 设⎪⎪⎪⎭
⎫ ⎝⎛---=81023316100A ,求可逆阵P ,使得AP P 1-为对角阵。
3. 设A =⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛-1000110000340043,求n A 。
4. 若三阶方阵A 的特征值为61=λ,332==λλ,其对应的特征向量为 T T T )1,2,1(,)1,0,1(,)1,1,1(321-=-==ααα,求A ,5A 。
5. 设A =⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛200010000B ,11111与b b a a 相似,
求(1)a ,b 之值,
(2)求可逆阵P ,使得AP P 1-=B
6. 已知⎪⎪⎪⎭
⎫ ⎝⎛-=111α是⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a
A 的一个特征向量。
(1) 试确定参数b a ,及特征向量α所对应的特征值。
(2) 问A 能否相似于对角阵?说明理由。
7.已知1,1,-1是三阶实对称矩阵A 的特征值,向量()T 1,1,11=α,()T 1,2,22=α 是A 的属于特征值1的特征向量,求(1)矩阵A 的属于特征值-1的特征向 量;(2)矩阵A 。
8.设有四阶方阵A 满足03=+A I ,I AA T 9=,0<A ,求*A 的一个特征值。
9.设矩阵⎪⎪⎪⎭
⎫ ⎝⎛---=a c b c a A 0135
1,1-=A ,*A 有一个特征值0λ,对应的特征向 量为()T
1,1,1--=α,求0,,,λc b a 的值。
10.设n 阶方阵满足0442=++I A A ,证明A 的特征值仅为-2。