稳态误差的总结分析和例解
- 格式:docx
- 大小:900.91 KB
- 文档页数:6
稳态误差的总结分析和例解控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。
只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。
一、 误差与稳态误差1、输入端的定义:对图一,比较输出得到:E(s)=R(s)-H(s)*Y(s)称E(s)为误差信号,简称误差图一2、输出端的定义:将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系:E ’(s)=E(s)/H(s)输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。
图二再有误差的时域表达式:也有:e(t)=L −1[E(S)]=L −1[Φe (s)*R(S)]其中Φe (s)是误差传递函数,定义为:Φe (s)=E sR (S )=11+G s ∗H s根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1)e ss (∞)=lim s →0s ∗E (s )=lim s →0s∗R (S )1+G s ∗H s二、 系统类型一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为:[]1()()()()ts ss e t L E s e t e t -==+G(S)H(S)=K (Tis +1)m i =1s ^v (Tjs +1)n −vj =1K 为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。
四、阶跃输入下的e ss (∞)与静态位置误差系数Kpr(t)=R*1(t),则有:e ss (∞)= R1+K ,ν=00 ,ν≥1用Kp 表示静态位置误差系数:e ss (∞)=R 1+lim s →0G s ∗H s =R1+Kp其中: Kp=lim s →0G s ∗H s且有一般式子:Kp=K ,ν=0∞ ,ν>=1五、斜坡输入下的e ss (∞)与静态速度误差系数Kvr(t)=Rt,则有:e ss (∞)= ∞ ,ν=0RK ,v =10,v ≥2用Kv 表示静态速度误差系数:e ss (∞)=R lim s →0G s ∗H s =RKv其中:Kv=lim s →0s ∗G s ∗H s六、加速度输入下的e ss (∞)与静态加速度误差系数Kar(t)=Rt 2/2,则有:e ss (∞)= ∞ ,ν=0、1R/K,v =20 ,v ≥3用Kv 表示静态速度误差系数:e ss (∞)=R lim s →0G s ∗H s =RKa其中:Kv=lim s →0s ^2∗G s ∗H s且有:Ka= 0, v =0、1K , v =2∞, v ≥3七、扰动状况下的稳态误差系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义:图三1、输入端定义法:扰动状况下的系统的稳态误差传递函数:由拉氏变换终值定理,求得扰动状况下的稳态误差为:2、输出端定义法:212()'()0()()1()()()G s E s Y s N s G s G s H s =-=-+记Φe (s) =−G 2 s1+G s 为误差传递函数,其中G(s)为:G(s)=G 1(s)*G 2(s)*H(s)八、减小或者消除稳态误差的措施: (1)保证系统中各个环节(或元件),特别是反馈回路中元件的参数具有一定的精度和恒定性;(2)对输入信号而言,增大开环放大系数(开环增益),以提高系统对给定输入的跟踪能力;(3)对干扰信号而言,增大输入和干扰作用点之间环节的放大系数(扰动点之前的前向通道增益),有利于减小稳态误差;(4)增加系统前向通道中积分环节数目,使系统型号提高,可以消除不同输入信号时的稳态误差。
自动控制原理稳态误差知识点总结自动控制系统是现代工程领域广泛应用的一种技术手段,稳态误差是自动控制系统中常见的问题之一。
本文将对自动控制原理中稳态误差的知识点进行总结,并以简明扼要的方式进行介绍。
1. 稳态误差的定义稳态误差是指系统在稳定状态下输出与期望输出之间的差值。
也就是说,当输入信号经过一段时间后,系统输出的值与期望输出值之间可能存在一定的偏差。
2. 稳态误差的分类稳态误差可以分为零稳态误差和非零稳态误差两种类型。
2.1 零稳态误差当输入信号为恒定值时,系统输出达到稳定状态后仍存在一定的误差,这种误差称为零稳态误差。
零稳态误差可以进一步分为四种类型:常数型、比例型、积分型和比例积分型。
2.1.1 常数型误差常数型误差是指系统输出与期望输出之间存在一个常数的差值。
通常情况下,常数型误差发生在开环控制系统中,无法通过反馈调节来消除。
2.1.2 比例型误差比例型误差是指系统输出与期望输出的差值与系统输出的值成比例关系。
比例型误差通常发生在比例控制系统中,可以通过调节比例增益来减小误差。
2.1.3 积分型误差积分型误差是指系统输出与期望输出的差值与时间的积分关系。
积分型误差通常发生在积分控制系统中,可以通过增加积分时间常数来减小误差。
2.1.4 比例积分型误差比例积分型误差是指系统输出与期望输出的差值与时间的积分关系,并且与系统输出的值成比例关系。
比例积分型误差通常发生在比例积分控制系统中,可以通过调节比例增益和积分时间常数来减小误差。
2.2 非零稳态误差非零稳态误差是指系统输出与期望输出之间的差值在稳定状态下不为零。
非零稳态误差通常出现在闭环控制系统中,主要原因是系统的特性引起的。
3. 稳态误差的影响因素稳态误差的大小和减小程度受多个因素的影响,包括输入信号的特性、系统的传递函数、控制器的参数等。
3.1 输入信号的特性输入信号的特性对稳态误差有直接影响。
例如,当输入信号是阶跃信号时,可能会引起常数型误差;当输入信号是斜坡信号时,可能会引起比例型误差。
实验三系统的稳态误差分析一.实验目的:1.了解系统开环增益和系统型别对稳态误差的影响。
2.了解输入信号的形式和幅值对系统稳态误差的影响。
3.分析扰动作用下对系统稳态误差的影响。
4.研究减小或消除稳态误差的措施。
二.实验内容:1.分别观测输入信号为阶跃信号、斜坡信号、加速度信号时,不同系统型别稳态误差的变化情况。
2.对有差系统,增大或减小系统的开环增益,观察系统稳态误差的变化。
3.改变输入信号的幅值,观察系统稳态误差的变化。
4.观测有扰动作用时,系统稳态误差的变化。
5.采取一种措施消除阶跃扰动对系统的影响。
三.实验原理:阶跃输入信号作用于0型系统,如图(3-1)所示:图(3-1)斜坡输入信号作用于Ⅰ型系统,如图(3-2)所示:图(3-2)加速度输入信号作用于Ⅱ型系统,如图(3-3)所示:图(3-3)扰动信号作用下的系统,如图(3-4)所示:图(3-4)四.实验步骤:利用MATLAB中的Simulink仿真软件。
1.参照实验一的步骤,建立如图(3-1)所示的实验方块图进行仿真;2.单击工具栏中的图标,开始仿真,观测在阶跃输入信号作用下,0型系统的输出曲线和误差曲线,记录此时的稳态误差值,并与理论计算值相比较;3.有误差时,调整“Gain”模块的增益,观察稳态误差的变化,分析系统开环增益对稳态性能的影响;4.有误差时,调整输入信号的幅值,观察稳态误差的变化,分析输入信号的大小对稳态误差的影响;5.将对象分别更换为Ⅰ型和Ⅱ型系统,观察在阶跃输入信号作用下,Ⅰ型和Ⅱ型系统的输出曲线和误差曲线,记录此时的稳态误差值。
6.更换输入信号的形式为斜坡信号,参考图(3-2)所示的实验方块图,重复步骤2~4,分别观测0型、Ⅰ型和Ⅱ型系统的稳态误差。
7.再将输入信号的形式更换为加速度信号,参考图(3-3)所示的实验方块图,重复步骤2~4,分别观测0型、Ⅰ型和Ⅱ型系统的稳态误差。
8.在扰动信号作用下,仿真实验方块图如图(3-4)所示,输入阶跃扰动信号,观测系统的输出曲线和误差曲线,记录此时的稳态误差值,并与计算的理论值相比较;9.调整“Gain”模块的增益,观察稳态误差有无变化;,10.再调整“Gain1”模块的增益,观察稳态误差有无变化;11.在扰动作用点之前增加积分环节消除阶跃扰动对系统输出的影响。
稳态误差的总结分析和例解
控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。
只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。
一、 误差与稳态误差
1、输入端的定义:
对图一,比较输出得到:
E(s)=R(s)-H(s)*Y(s)
称E(s)为误差信号,简称误差
图一
2、输出端的定义:
将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系:
E ’(s)=E(s)/H(s)
输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。
图二
再有误差的时域表达式:
也有:
e(t)= [E(S)]= [Φe (s)*R(S)]
其中Φe (s)是误差传递函数,定义为:
Φe (s)=
=
根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1)
e ss (∞)= =
二、 系统类型
一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为:
[]1()()()()
ts ss e t L E s e t e t -==+
G(S)H(S)=
K为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。
四、阶跃输入下的e
ss
(∞)与静态位置误差系数Kp
r(t)=R*1(t),则有:e
ss (∞)=
ν
ν
用Kp表示静态位置误差系数:e
ss
(∞)==其中: Kp=
且有一般式子:Kp=
ν∞ν
五、斜坡输入下的e
ss
(∞)与静态速度误差系数Kv
r(t)=Rt,则有:e
ss (∞)=
ν
用Kv表示静态速度误差系数:e
ss
(∞)==其中: Kv=
六、加速度输入下的e
ss
(∞)与静态加速度误差系数Ka
r(t)=Rt2/2,则有: e
ss (∞)=
ν、
用Kv表示静态速度误差系数: e
ss
(∞)==
其中: Kv=
且有: Ka=
、
七、扰动状况下的稳态误差
系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义:
图三
1、输入端定义法:
扰动状况下的系统的稳态误差传递函数:
由拉氏变换终值定理,求得扰动状况下的稳态误差为:
2、输出端定义法:
212()
'()0()()
1()()()G s E s Y s N s G s G s H s =-=-
+
记Φe (s) =
为误差传递函数,其中G(s)为:
G(s)=G 1(s)*G 2(s)*H(s)
八、减小或者消除稳态误差的措施: (1)保证系统中各个环节(或元件),特别是反馈回路中元件的参数具有一定的精度和恒定性;
(2)对输入信号而言,增大开环放大系数(开环增益),以提高系统对给定输入的跟踪能力;
(3)对干扰信号而言,增大输入和干扰作用点之间环节的放大系数(扰动点之前的前向通道增益),有利于减小稳态误差;
(4)增加系统前向通道中积分环节数目,使系统型号提高,可以消除不同输入信号时的稳态误差。
(5)采用前馈控制(复合控制) ○
1对干扰补偿:
○
2对给定输入补偿:
典例分析:
典例1:
典例2:
设单位反馈系统开环传函为G(s)=1/Ts,输入信号分别为r(t)=t2/2以及r(t)=sin(),试求控制系统的稳态误差。
典例3:。