3、注水原理推导,功率和比特分配算法
- 格式:doc
- 大小:140.50 KB
- 文档页数:3
注水算法解决信道功率分配问题严红,学号:9340023,2012级,***摘要:无线通信技术的日新月异是人类文明发展和社会进步的一个重要展现。
自从1948年香农建立信息论开始,到现在通信已经进入飞速发展的年代,短短的几十年间,无线通信技术在人类社会的各个方面得到了无处不在的应用。
无线通信过程中,在具有多径衰落的短波无线电信道上,即使传输低速(1200波特)的数字信号,也会产生严重的码间串扰。
为了解决这个问题,除了采用均衡器外,途径之一就是采用多个载波,将信道分成许多个子信道。
将基带码元均匀的分散地对每个子信道的载波调制。
随着要求传输的码元速率不断提高,传输带宽也越来越宽。
今日多媒体通信的信息传输速率要求已经达到若干Mb/s,并且移动通信的传输信道可能是在大城市中多径衰落严重的无线信道。
为了解决这个问题,并行调制的体制再次受到重视。
正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)就是在这种形式下得到发展的。
在有限的频谱资源的条件下,由于电磁环境是复杂多变的,不同信道的质量也是不同的,如果直接将信号发射出去,信道的容量将不会很高。
因此,在系统中增加资源调度模块根据信道增益自适应地进行资源配置,可明显提高系统吞吐量。
文章介绍了使用MATLAB的cvx工具箱来解决注水算法的功率分配的凸优化问题。
关键字:正交频分复用(OFDM),信道容量,功率分配,凸优化一、OFDM发展史OFDM技术是由多载波调制技术发展而来的,既可以看作是一种调制技术,也可看作是一种复用技术。
OFDM最早起源于二十世纪五十年代中期,早先主要应用在军用无线通信系统中;二十世纪七十年代,Weinstein和Ebert提出了使用离散傅里叶变换来实现多载波调制,但当时还没有出现实时傅里叶变换的设备,OFDM技术没有在实际中得到广泛应用;二十世纪八十年代,Cimini使得FFT技术可以快速简单地实现,OFDM在无线移动通信中的应用得到了快速发展;二十世纪九十年代以來,OFDM技术开始在欧洲国家广泛应用,在1999年,IEEE802.11a通过了一个5GHz的无线局域网标准,其中就采用了OFDM技术作为物理层标准,OFDM技术的实用化加快了脚部[1]。
1.1功率注水算法注水算法是根据某种准则,并根据信道状况对发送功率进行自适应分配,通常是信道状况好的时刻,多分配功率,信道差的时候,少分配功率,从而最大化传输速率。
实现功率的“注水”分配,发送端必须知道CSI 。
当接收端完全知道信道而发送端不知道信号时,发送天线阵列中的功率平均分配是合理的。
当发送端知道信道,可以增加信道容量。
考虑一个1⨯r 维的零均值循环对称复高斯信号向量s ~,r 为发送信道的秩。
向量在传送之前被乘以矩阵V (H V U H ∑=)。
在接收端,接受到的信号向量y 被乘以H U 。
这个系统的有效输入输出关系式由下式给出:n s M E n U s V V U U M E n U s HV U M E y Ts H H HTs H H T s ~~~~~+∑=+∑=+=s其中y ~是1⨯r 维的变换的接受信号向量,n ~是协方差矩阵为rH I N n n 0}~~{=ξ的零均值循环对称复高斯1⨯r 变换噪声向量。
向量s ~必须满足T HM s s =}~~{ξ已限制总的发送能量。
可以看出ii i Tsi n s M E y ~~~+=λ,i=1,2,…,r MIMO 信道的容量是单个平行SISO 信道容量之和,由下式给出∑=+=ri i T is N M E C 12)1(log λγ其中}{2i i s ξγ=(i=1,2,…,r)反映了第i 个子信道的发送能量,且满足T ri iM =∑=1γ。
可以在子信道中分配可变的能量来最大化互信息。
现在互信息最大化问题就变成了:∑==+∑==ri i T i s M N M E C r i T i 1)2)1(log max 1λγγ最大化目标在变量),..,1(r i i =γ中是凹的,用拉格朗日法最大化。
最佳能量分配政策}0),max {(0is T opt i E N M λμγ-= ∑==ri T opt iM 1γ注水算法:Step1:迭代计数p=1,计算]11[1110∑+-++-=p r isTE N p r M λμStep2:用μ计算is T i E N M λμγ0-=,i=1,2,…,r -p+1 Step3:若分配到最小增益的信道能量为负值,即设01=+-p r γ,p=p+1,转至Step1. 若任意i γ非负,即得到最佳注水功率分配策略。
注水定理算法步骤
注水定理在信息论等领域可是个很有趣的东西呢。
那它的算法步骤大概是这样的。
我们得先确定一些东西哦。
要知道信道的一些特性,就像是你要了解一个小伙伴的脾气秉性一样。
这里要知道信道的噪声功率谱密度之类的参数。
然后呢,我们要构建一个关于功率分配的函数。
这个函数就像是一个魔法配方,根据不同的信道状况,把总功率分配到不同的子信道上去。
这就好比你有一堆糖果,要根据小伙伴们的喜好,分给不同的小伙伴。
接着呀,这个函数会在一些条件的约束下达到最优。
比如说,总功率是有限制的,不能无限制地分配。
这就像你手里的糖果数量是有限的,不能凭空变出来更多去分给大家。
在实际计算的时候,我们可能会用到一些数学工具,像拉格朗日乘子法之类的。
不过可别被这个名字吓到啦,就把它当成一个小帮手。
它能帮助我们找到那个最优的功率分配方案。
再然后呢,根据计算出来的结果,我们就知道每个子信道应该分配多少功率啦。
就像是每个小伙伴都拿到了属于自己的那份糖果,大家都开开心心的。
1.1功率注水算法注水算法是根据某种准则,并根据信道状况对发送功率进行自适应分配,通常是信道状况好的时刻,多分配功率,信道差的时候,少分配功率,从而最大化传输速率。
实现功率的“注水”分配,发送端必须知道CSI。
当接收端完全知道信道而发送端不知道信号时,发送天线阵列中的功率平均分配是合理的。
当发送端知道信道,可以增加信道容量。
考虑一个维的零均值循环对称复高斯信号向量,r为发送信道的秩。
向量在传送之前被乘以矩阵()。
在接收端,接受到的信号向量y被乘以。
这个系统的有效输入输出关系式由下式给出:其中是维的变换的接受信号向量,是协方差矩阵为的零均值循环对称复高斯变换噪声向量。
向量必须满足已限制总的发送能量。
可以看出,i=1,2,…,rMIMO信道的容量是单个平行SISO信道容量之和,由下式给出其中(i=1,2,…,r)反映了第i个子信道的发送能量,且满足。
可以在子信道中分配可变的能量来最大化互信息。
现在互信息最大化问题就变成了:最大化目标在变量中是凹的,用拉格朗日法最大化。
最佳能量分配政策注水算法:Step1:迭代计数p=1,计算Step2:用μ计算,i=1,2,…,r-p+1Step3:若分配到最小增益的信道能量为负值,即设,p=p+1,转至Step1.若任意非负,即得到最佳注水功率分配策略。
1.2 发送端知道信道时的信道容量% in this programe a highly scattered enviroment is considered. The% Capacity of a MIMO channel with nt transmit antenna and nr recieve% antenna is analyzed. The power in parallel channel (after % decomposition) is distributed as water-filling algorithm clear allclose allclcnt_V = [1 2 3 2 4];nr_V = [1 2 2 3 4];N0 = 1e-4;B = 1;Iteration = 1e2; % must be grater than 1e2SNR_V_db = [-10:3:20];SNR_V = 10.^(SNR_V_db/10);color = ['b';'r';'g';'k';'m'];notation = ['-o';'->';'<-';'-^';'-s'];for(k = 1 : 5)nt = nt_V(k);nr = nr_V(k);for(i = 1 : length(SNR_V))Pt = N0 * SNR_V(i);for(j = 1 : Iteration)H = random('rayleigh',1,nr,nt);[S V D] = svd(H);landas(:,j) = diag(V);[Capacity(i,j) PowerAllo] = WaterFilling_alg(Pt,landas(:,j),B,N0); endendf1 = figure(1);hold onplot(SNR_V_db,mean(Capacity'),notation(k,:),'color',color(k,:)) clear landasendf1 = figure(1)legend_str = [];for( i = 1 : length(nt_V))legend_str =[ legend_str ;...{['nt = ',num2str(nt_V(i)),' , nr = ',num2str(nr_V(i))]}];endlegend(legend_str)grid onset(f1,'color',[1 1 1])xlabel('SNR in dB')ylabel('Capacity bits/s/Hz')注水算法子函数function [Capacity PowerAllo] = WaterFilling_alg(PtotA,ChA,B,N0); %% WaterFilling in Optimising the Capacity%===============% Initialization%===============ChA = ChA + eps;NA = length(ChA); % the number of subchannels allocated toH = ChA.^2/(B*N0); % the parameter relate to SNR in subchannels % assign the power to subchannelPowerAllo = (PtotA + sum(1./H))/NA - 1./H;while(length(find(PowerAllo < 0 ))>0)IndexN = find(PowerAllo <= 0 );IndexP = find(PowerAllo > 0);MP = length(IndexP);PowerAllo(IndexN) = 0;ChAT = ChA(IndexP);HT = ChAT.^2/(B*N0);PowerAlloT = (PtotA + sum(1./HT))/MP - 1./HT;PowerAllo(IndexP) = PowerAlloT;endPowerAllo = PowerAllo.';Capacity = sum(log2(1+ PowerAllo.' .* H));注意:是的奇异值,所以对H奇异值分解后要平方ChA.^21.3 发送端不知道信道时的信道容量功率均等发送,信道容量的表达式为clear allclcnt_V = [1 2 3 2 4];nr_V = [1 2 2 3 4];N0 = 1e-4;B = 1;Iteration = 1e2; % must be grater than 1e2SNR_V_db = [-10:3:20];SNR_V = 10.^(SNR_V_db/10);color = ['b';'r';'g';'k';'m'];notation = [':o';':>';'<:';':^';':s'];for(k = 1 : length(nt_V))nt = nt_V(k);nr = nr_V(k);for(i = 1 : length(SNR_V))Pt = N0 * SNR_V(i);for(j = 1 : Iteration)H = random('rayleigh',1,nr,nt);Capacity(i,j)=log2(det(eye(nr)+Pt/(nt*B*N0)* H*H')); endendf2= figure(2);hold onplot(SNR_V_db,mean(Capacity'),notation(k,:),'color',color(k,:)) clear landasendf2= figure(2)legend_str = [];for( i = 1 : length(nt_V))legend_str =[ legend_str ;...{['nt = ',num2str(nt_V(i)),' , nr = ',num2str(nr_V(i))]}];endlegend(legend_str)grid onset(f2,'color',[1 1 1])xlabel('SNR in dB')ylabel('Capacity bits/s/Hz')1.4 已知信道和未知信道容量比较clear allclose allclcnt_V = [1 2 3 2 4];nr_V = [1 2 2 3 4];N0 = 1e-4;B = 1;Iteration = 1e2; % must be greater than 1e2 SNR_V_db = [-10:3:20];SNR_V = 10.^(SNR_V_db/10);color = ['b';'r';'g';'k';'m'];notation = ['-o';'->';'<-';'-^';'-s'];notation_uninf= [':o';':>';'<:';':^';':s'];for(k = 1 : length(nt_V))nt = nt_V(k);nr = nr_V(k);for(i = 1 : length(SNR_V))Pt = N0 * SNR_V(i);for(j = 1 : Iteration)H = random('rayleigh',1,nr,nt);[S V D] = svd(H);landas(:,j) = diag(V);Capacity_uninf(i,j)=log2(det(eye(nr)+Pt/(nt*B*N0)* H*H')); [Capacity(i,j) PowerAllo] = WaterFilling_alg(Pt,landas(:,j),B,N0); endendf1 = figure(1);hold onplot(SNR_V_db,mean(Capacity'),notation(k,:),'color',color(k,:)) hold onplot(SNR_V_db,mean(Capacity_uninf'),notation_uninf(k,:),'color',color(k,:))clear landasendgrid onset(f1,'color',[1 1 1])xlabel('SNR in dB')ylabel('Capacity bits/s/Hz')f1 = figure(1)legend_str = [];for( i = 1 : length(nt_V))legend_str =[ legend_str ;...{['nt = ',num2str(nt_V(i)),' , nr = ',num2str(nr_V(i))]}];endlegend(legend_str)grid onset(f1,'color',[1 1 1])xlabel('SNR in dB')ylabel('Capacity bits/s/Hz')由图形中可以看出:1. 在小信噪比时,相同信噪比下利用CSI的功率注水算法获得容量优于未知CSI的平均功率分配算法;相同容量下已知CSI信噪比比未知CSI时的信噪比小3dB.2. 当信噪比增大到一定程度时,功率注水算法所获得的信道容量将收敛到平均功率分配的信道容量。
摘要现如今无线通信的技术发展的越来越火热,但同时也会面临这样的问题:频谱的资源变得也来越少。
以前处于静态的无线频谱管理的方式会让一些频谱常常处于一种空闲的状态。
这些常常处于空闲的状态会限制频谱利用率。
如果长时间这样,则会影响频谱的利用率,造成频谱资源的浪费。
主要的目的是为了提高频谱的利用率,人们于是提出认知无线电的思想。
在基于认知无线电的基础上发展正交频分复用可以降低总的发送功率,由串行的高功率变成多个并行的子载波低功率发送。
首先,这篇文章介绍了认知无线电产生的背景和两个对认知无线电的概念的解释,认知无线电特点当中的认知能力更够感应外部环境的检测,分析频谱和对频谱的判定。
其次,就OFDM的认知无线电频谱感知做出了一些研究,通过搭建感知的系统模型,研究其功能等特点。
对于认知无线电OFDM系统资源分配算法,本节通过简单的介绍了Wong算法、最小容量最大化算法、RA算法、迭代注水算法等,需要找一种多用户资源分配算法当中的最优算法。
本章节仿真采用的是典型的迭代注水算法,得出的结论是这个算法的主要是能够实现使功率最小或者速率的最大化。
关键词:认知无线电;OFDM;多用户;注水算法AbstractNow the technology of wireless communication is developing more and more hot, but at the same time, it also will face the problem: the resources of the spectrum become more and less. Before the static wireless spectrum management approach will let some spectrum is often in an idle state. These are often idle and limit the spectrum utilization. If this is long, it will affect the utilization of the spectrum, resulting in the waste of spectrum resources. The main purpose is to improve the utilization of the spectrum, people then put forward the idea of cognitive radio. The development of the orthogonal frequency division multiplexing based on the cognitive radio can reduce the total transmission power, and transmit the high power from serial to multiple parallel sub carriers with low power.First, this article introduced explained the background of cognitive radio and two of cognitive radio concept, cognitive radio characteristics of cognitive capacity enough induction of the external environment detection, analysis of spectrum and the spectrum determination. Secondly, some research is made on the cognitive radio spectrum of OFDM, and the features of the cognitive radio spectrum sensing system are studied.For cognitive radio OFDM resource allocation algorithm, in this section, through simple introduced Wong algorithm, minimum capacity maximization algorithm, RA algorithm, iterative water filling algorithm and need to find a multiuser resource allocation algorithm for the optimal algorithm. This chapter uses a typical iterative water injection algorithm, and the conclusion is that the algorithm can achieve the maximum of the minimum power or rate.Keywords: cognitive radio; OFDM; multiuser; water flooding algorithm目录摘要 (I)ABSTRACT ............................................................................................................................. I I1 绪论 (1)1.1认知无线电的提出 (1)1.1.1认知无线电产生的背景 (1)1.1.2 认知无线电的相关专业术语 (1)1.2认知无线电 (2)1.2.1 认知无线电定义 (2)1.2.2认知无线电的特点 (2)1.3认知无线电的使用领域和关键技术 (3)1.3.1认知无线电的技术应用 (3)1.3.2 认知无线电的关键技术介绍 (4)1.4本章小结 (6)2 OFDM系统的研究 (8)2.1OFDM的简介 (8)2.1.1 OFDM的产生背景 (8)2.1.2 OFDM的概念 (8)2.1.3 OFDM系统原理 (8)2.2OFDM的系统设计 (9)2.2.1串/并变换 (9)2.2.2 OFDM系统中DFT的实现 (10)2.2.3 保护间隔和循环前缀的技术 (10)2.2.4 RF调制 (12)2.3OFDM系统的优缺点 (13)2.4OFDM系统的关键技术 (14)2.5OFDM系统用户资源分配算法的研究 (15)2.5.1单用户比特分配算法 (15)2.5.2多用户子载波和比特分配法 (16)2.6本章小结 (19)3 认知无线电OFDM系统多用户资源分配算法的研究 (21)3.1OFDM系统中多用户自适应分配问题模型 (21)3.2OFDM系统中的W ONG自适应分配算法 (23)3.2.1 Wong算法简介 (23)3.3典型多用户OFDM系统的RA算法 (27)3.3.1 容量最大化算法 (27)3.3.2 最小容量最大化算法 (28)3.3.3比例速率限制下容量最大化算法 (28)3.4具有分配公平性的多用户自适应分配算法 (30)3.4.1速率比例固定的多用户自适应分配算法 (30)3.4.2单用户功率分配 (31)3.4.3多用户之间的功率分配 (32)3.5本章小结 (34)4 CR-OFDM迭代注水算法 (35)4.1系统模型 (35)4.2子载波的分配算法 (37)4.3功率分配算法 (37)4.3.1 注水算法 (37)4.3.2 约束注水算法 (38)4.3.3仿真结果与分析 (39)4.4本章小结 (40)结论 (41)参考文献 (43)1 绪论1.1认知无线电的提出认知无线电[1]是一项有关在认知无线网络中能够提高频谱利用率的关键技术。
“注水”定理及其在OFDM 中的应用1“注水”定理阐述“注水”定理适用于如下情形:1. 1信道条件信道输入平稳随机序列12,,N X X X X = ,输出的平稳随机序列12,,N Y Y Y Y = ,噪声序列为12,,N n n n n = 为零均值的高斯加性噪声。
定义组合加性高斯白噪声信道(等价于多维无记忆高斯加型连续信道)为:信道中各单元时刻()1,2,i N = 上的加性噪声为均值为零,方差为各不相同的()1,2,ni P i N = 的高斯噪声,且各分量统计独立。
1. 2约束条件当且仅当信道输入平稳随机序列12,,N X X X X = 中各分量统计独立,各加性噪声为均值为零,方差为各不相同的()1,2,ni P i N = 的高斯噪声时,信道容量为: ()2max ;1 log 1 (1.1)2ii ns in C I X Y P P =⎛⎫=+⎪ ⎪⎝⎭∑ 1. 3“注水”定理各个输入信号的总体平均功率21 N i i E X =⎡⎤⎢⎥⎣⎦∑受限,因此存在一个约束条件为21 (1.2) N i i P E X =⎡⎤=⎢⎥⎣⎦∑要计算()max ;C I X Y =,就是计算式(1.1)在约束条件式(1.2)下的最大值。
引用拉格朗日乘数法求解此问题,做辅助函数()1221,,log 1 (1.3)2iNi i nn s s s s s ii n P J P P P P P λ⎛⎫=++ ⎪ ⎪⎝⎭∑∑ 其中2i s i P E X ⎡⎤=⎣⎦为各个时刻的信号平均功率,λ为参数,即拉格朗日乘子,对辅助函数()12,,N s s s J P P P 逐一求i s P 的导数,使之等于零:()()12,,0 1,2, (1.4)Nis s s s J P P P i N P ∂==∂即得到:()110 1,2, (1.5)2i in s i N P P λ+==+1(1.6)2i i i s n n P P v P λ=--=- 其中v 为常数,由于式(1.6)中的i s P 可能为负值,这表明并联信道中,某一新到的平均噪声功率i n P 大于信道分配到的信号平均功率时,信号将淹没在噪声中而无法利用。
摘要正交频分复用(OFDM)使用并行数据传输和子信道相互交叠的技术,在充分利用可用带宽的同时,能很好地对抗突发噪声和多径失真。
本文首先通过仿真采用QPSK调制的OFDM 系统。
MATLAB仿真结果表明,OFDM通过采用循环前缀可以有效地克服码间干扰(ISI)和子载波间干扰(ICI)。
在不同子信道具有不同的衰落特性时,如果对所有OFDM子载波采用相同的调制方式和功率分配,则会影响到系统的总体性能。
因此,本文进一步研究了基于chow算法和Levin-campello算法的信道自适应OFDM。
算法通过利用信道状态信息,动态地分配子信道的功率、比特数以适应信道要求,从而使系统达到更好的传输性能。
关键词:chow算法、Levin-campello算法、OFDM、自适应、IFFT/FFT调制解调、循环前缀ABSTRACTBy using parallel data transmission and channel overlapping, orthogonal frequency division multiplexing (OFDM) system can make full use of the available bandwidth and is robust against sudden noise and multipath distortion. This paper first studies the OFDM with QPSK modulation by simulation with MATLAB. The simulation results show that OFDM with cyclic prefix can effectively overcome the inter-symbol interference (ISI) and inter-carrier interference (ICI). In case that channel fading characteristic is different for different OFDM subchannel, the system’s overall performance will be affected if all the subcarriers use the same modulation format and power. Therefore, this paper also studies adaptive OFDM system based on chow algorithm and Levin-campello algorithm. By making use of the estimation of channel parameters,the subchannel’s power and modulation format are assigned dynamically to improve the system’s overall performance.Key Words : Chow Algorithm、Levin-campello Algorithm、OFDM、 Adaptive Loading IFFT/FFT modulation and demodulation、 Cyclic Prefix目录摘要 (1)ABSTRACT (2)1. 绪论 (4)1.1 OFDM系统的发展现状 (4)1.2 OFDM在光纤信道中的应用---O-OFDM (4)1.3 OFDM的优缺点 (5)1.4本文的研究内容 (6)2. OFDM的基本原理 (6)2.1 OFDM系统与FDM系统的区别 (6)2.2 OFDM系统架构 (7)2.3 OFDM系统的调制解调 (8)2.4 OFDM系统的保护间隔和循环前缀 (10)2.5 OFDM系统参数选择 (11)2.6 基于QPSK的OFDM的仿真 (13)2.6.1单径高斯白噪声信道下系统的仿真流程 (13)2.6.2多径高斯白噪声信道下误比特率和循环前缀、SNR的关系 (14)3.OFDM中的自适应技术 (16)3.1 自适应技术的实现 (16)3.2 自适应OFDM的系统原理 (18)3.3 chow自适应算法的原理 (18)3.3.1 chow算法的matlab仿真 (20)3.4 基于chow算法的自适应OFDM的仿真 (21)3.4.1 基于chow算法的自适应OFDM的仿真流程图和仿真说明 (21)3.4.2自适应OFDM系统的仿真参数设置及仿真结果 (21)3.5 Levin-Campello自适应算法的原理 (24)3.5.1 Levin-Campello RA自适应算法的原理 (24)3.5.2 Levin-Campello MA自适应算法的原理 (27)3.6 基于Levin-Campello算法的自适应OFDM的仿真 (28)3.6.1 基于Levin-Campello RA算法的自适应OFDM的仿真 (28)3.6.2 基于Levin-Campello MA算法的自适应OFDM的仿真 (31)4. 总结与展望 (35)参考文献 (36)致谢 (37)1. 绪论1.1OFDM系统的发展现状OFDM 全称是Orthogonal Frequency Division Multiplexing,称作正交频分复用。
注水算法原理注水算法(Water Filling Algorithm)是一种常用的信号处理算法,主要用于无线通信系统中的功率分配问题。
其原理是根据信道的信噪比情况,将总功率按照一定的规则分配到各个子载波上,以达到最优的传输性能。
本文将介绍注水算法的基本原理和应用。
首先,我们来看一下注水算法的基本原理。
在无线通信系统中,信道的信噪比是一个非常重要的参数,它直接影响到信号的传输质量。
在一个多载波的通信系统中,不同的子载波的信道质量是不同的,有些子载波的信道质量较好,有些子载波的信道质量较差。
注水算法的基本思想就是将总功率按照信道质量的大小进行分配,即在信道质量较好的子载波上分配更多的功率,在信道质量较差的子载波上分配较少的功率,以达到整体传输性能的最优化。
其次,我们来看一下注水算法的应用。
注水算法主要应用于多载波通信系统中的功率分配问题,例如正交频分复用(OFDM)系统、多载波码分多址(MC-CDMA)系统等。
在这些系统中,由于信道的多样性,不同的子载波之间的信道质量存在较大差异,因此需要采用注水算法来进行功率分配,以提高系统的整体传输性能。
在实际应用中,注水算法需要考虑的因素有很多,例如信道的动态变化、用户间的干扰、系统的功率限制等。
因此,如何设计高效的注水算法成为了无线通信系统中的一个重要问题。
目前,针对不同的通信系统和应用场景,研究人员提出了许多改进的注水算法,如基于子载波分组的注水算法、考虑干扰的注水算法等,这些算法在不同的场景下都取得了一定的成果。
总的来说,注水算法作为一种常用的功率分配算法,在无线通信系统中发挥着重要的作用。
通过合理地分配功率,可以有效地提高系统的传输性能,提高系统的容量和覆盖范围。
随着通信技术的不断发展,注水算法也将会得到进一步的改进和应用,为无线通信系统的发展做出更大的贡献。
通过本文的介绍,相信读者对注水算法的原理和应用有了一定的了解。
希望本文能够对相关领域的研究和应用工作有所帮助。
三、注水原理推导,功率和比特分配算法
1、注水原理推导
当发射端已知CSI 时,可以采用注水原理来分配各个发送天线的功率,在功率受限的情况下,注水原理可以通过MIMO 信道容量最大化推导出来。
注水原理的推导:(在信道容量推导的基础上)
功率满足:m
1i i P P ==∑
信道容量: 221log 1m
i
i i P C λσ=⎛⎫=+ ⎪⎝⎭∑ 寻求使容量C 最大化的i P 的值: 利用拉格朗日乘数法引入函数:2211log 1(P )N
N i i i i i P Z L P λσ==⎡⎤=++-⎢⎥⎣⎦∑∑ 令0i Z P ∂=∂,有:22
10ln 21i i i Z L P P λσλσ∂=•-=∂+ 得:22
1L ln 2i i i
P σσμλλ=-=-•,其中μ为常数 推导得到:+
2i i P σμλ⎛⎫=- ⎪⎝⎭ 式中,+a 指()0,m ax a ,μ称为注水平面,i λ是信道矩阵的第i 个特征值,2σ是噪声方差。
2、基于注水原理的功率分配算法
m 1i i P P ==∑=122
1()m
m i i i i m σλμσμλ===--∑∑ 21P+=i m
i m σλμ=∑
+2i i P σμλ⎛⎫=- ⎪⎝
⎭ 算法可以描述如下:
Step1: 初始化,设第k 个时刻定总功率为()1P k =;
Step2: 根据)(H SVD =λ并由注水定理可得出每根天线上分配的功率),(k P i 且有)()(1k P k P r
i i =∑=;
Step3: 对式))(1(log 2
2σλk P m i i i ⋅
Γ+=进行量化可得出每根天线分配到的比特)(k R i ; Step4: 根据式(3.9)计算系统数据速率;
Step5 : 1k k =+()1P k =,跳转至Step2
实际上这种算法时把信道 H 分解成了))((H rank m 个相互之间独立并行的子信道并根据各个子信道的好坏来分配不同的发送功率。
信道好,全力发送;差一些,相应的减少功率;而当某一信道太恶劣时,再分配给它功率无助于容量的增加,那么只好关闭这种信道(不分配功率),而把功率分配给其他好的信道。
注水原理图为:
根据MIMO 信道容量推导的有关内容,不难得到基于注水算法MIMO 系统的信道容量为:
()22211log 1m
i i C λμσσ+=⎡⎤=+-⎢⎥⎣⎦∑ 3、比特分配
常用的矩形QAM 星座包括4QAM 、8QAM 、16QAM 、32QAM 、64QAM 、128QAM 和256QAM 等,每个星座点分别对应得比特数量为2、3、4、5、6、7和8等。
当采用QAM 调制方式且SNR 在dB 30~0范围内时,BER 存在一个误差小于
1dB 的上界[9]
)12/(6.12.0--≤M SNR e BER
此时 BER 和SNR 的关系可以近似为:
⎪⎩
⎪⎨⎧-=Γ=Γ-=)5ln(/6.1),6,4,2,1(,12BER M SNR M 可得: )
1(log 2i i SNR m ⋅Γ+=,
)1(log 12i m i w SNR C ⋅Γ+=∑=
i m 为第i 根天线分配的比特数,w C 是归一化的信道容量,也即最大数据速率。
而该数据速率是连续的,而在实际的传输中,由于实际调制方式的限制,某一时刻实际的数据速率是离散的,,因此需要对i m 进行量化。
量化后的数据速率为:(容量最大化等价于数据速率最大化)
))1((log 12i m
i SNR round R ⋅Γ+=∑= (3.9)。