(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-
- 格式:doc
- 大小:340.50 KB
- 文档页数:22
圆锥曲线中的定点问题一、考情分析定点问题一直是圆锥曲线中的热点问题,高考主要考查直线过定点问题,有时也会涉及圆过定点问题.二、解题秘籍(一)求解圆锥曲线中定点问题的思路与策略1.处理定点问题的思路:(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线F x ,y =0的联系,得到有关k 与x ,y 的等式(3)所谓定点,是指存在一个特殊的点x 0,y 0 ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与x ,y 的等式进行变形,直至易于找到x 0,y 0.常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“k ⋅ ”的形式,从而x 0,y 0只需要先让括号内的部分为零即可②若等式为含k 的分式,x 0,y 0的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)2.处理定点问题两个基本策略:(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【例1】(2023届河南省顶级名校高三上学期月考)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点,MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N ,且直线MN 的斜率为24.(1)求椭圆C 的离心率;(2)设D 0,1 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于A ,B 两点,证明直线AB 过定点,并求出定点坐标.【解析】(1)由题意知,点M 在第一象限,∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c .当x =c 时,y =b 2a ,即M c ,b 2a.又直线MN 的斜率为24,所以tan ∠MF 1F 2=b 2a2c =b 22ac =24,即b 2=22ac =a 2-c 2,即c 2+22ac -a 2=0,则e 2+22e -1=0,解得e =22或e =-2(舍去),即e =22.(2)已知D 0,1 是椭圆的上顶点,则b =1,由(1)知e =22=1-b a 2,解得a =2,所以,椭圆C 的方程为x 22+y 2=1,设直线AB 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +m x 2+2y 2=2可得1+2k 2 x 2+4km x +2m 2-1 =0* ,所以x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-1 1+2k 2,又DA =x 1,y 1-1 ,DB=x 2,y 2-1 ,DA ⋅DB=x 1x 2+y 1-1 y 2-1 =x 1x 2+kx 1+m -1 kx 2+m -1 =k 2+1 x 1x 2+k m -1 x 1+x 2 +(m -1)2=k 2+1 ⋅2m 2-1 1+2k 2+k m -1 ⋅-4km 1+2k2+(m -1)2=2m 2-1 k 2+1 -4k 2m 2-m +1+2k 2 (m -1)21+2k 2=0,化简整理有3m 2-2m -1=0,得m =-13或m =1.当m =1时,直线AB 经过点D ,不满足题意;.当m =-13时满足方程* 中Δ>0,故直线AB 经过y 轴上定点G 0,-13.【例2】椭圆C 的焦点为F 1-2,0 ,F 22,0 ,且点M 2,1 在椭圆C 上.过点P 0,1 的动直线l 与椭圆相交于A ,B 两点,点B 关于y 轴的对称点为点D (不同于点A ).(1)求椭圆C 的标准方程;(2)证明:直线AD 恒过定点,并求出定点坐标.【解析】(1)设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0),由已知得c =2,2a =MF 1 +MF 2 =2-2 2+1+2+2 2+1=4.所以a =2,b 2=a 2-c 2=2,所以椭圆C 的标准方程为x 24+y 22=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +1(k ≠0).由x 24+y 22=1y =kx +1得(2k 2+1)x 2+4kx -2=0.设A (x 1,y 1),B (x 2,y 2),D (-x 2,y 2),则Δ=16k 2+82k 2+1 >0x 1+x 2=-4k2k 2+1x 1x 2=-22k 2+x,特殊地,当A 的坐标为(2,0)时,k =-12,所以2x 2=-43,x 2=-23,y 1=43,即B -23,43 ,所以点B 关于y 轴的对称点为D 23,43,则直线AD 的方程为y =-x +2.当直线l 的斜率不存在时,直线AD 的方程为x =0.如果存在定点Q 满足条件,则为两直线交点Q (0,2),k QA =y 1-2x 1=y 1-1-1x 1=k -1x 1,k QD =y 2-2-x 2=-k +1x 2,又因为k QA -k QD =2k -1x 1+1x 2 =2k -x 1+x 2x 1x 2=2k -2k =0.所以k QA =k QD ,即A ,D ,Q 三点共线,故直线AD 恒过定点,定点坐标为(0,2).【点评】本题是先根据两条特殊的曲线的交点Q (0,2),然后再根据A ,D ,Q 三点共线,判断直线AD 恒过定点,(二)直线过定点问题1.直线过定点问题的解题模型2.求解动直线过定点问题,一般可先设出直线的一般方程:y =kx +b ,然后利用题中条件整理出k ,b 的关系,若b =km +n m ,n 为常数 ,代入y =kx +b 得y =k x +m +n ,则该直线过定点-m ,n .【例3】(2023届福建省泉州市高三毕业班质量监测(一))已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点A -2,0 .右焦点为F ,纵坐标为32的点M 在C 上,且AF ⊥MF .(1)求C 的方程:(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【解析】(1)设点F c ,0 ,其中c =a 2-b 2>0,则M c ,32,因为椭圆C 过点A -2,0 ,则a =2,将点M 的坐标代入椭圆C 的方程,可得c 2a 2+94b 2=1可得4-b 24+94b2=1,解得b =3,因此,椭圆C 的标准方程为x 24+y 23=1.(2)证明:由对称性可知,若直线PQ 过定点T ,则点T 必在x 轴上,设点T t ,0 ,设点P x 0,y 0 x 0≠±2,y 0≠0 ,则k PA =y 0x 0+2,所以,直线PA 的垂线的斜率为k =-x 0+2y 0,故直线FQ 的方程为y =-x 0+2y 0x -1 ,在直线FQ 的方程中,令x =-2,可得y =3x 0+2 y 0,即点Q -2,3x 0+2y 0,所以,直线PQ 的方程为y -y 0=y 0-3x 0+2y 0x0+2x -x 0 ,因为点T 在直线PQ 上,所以,-y 0=y 0-3x 0+2 y 0x 0+2t -x 0 ,即y 20t +2 =3x 0+2 t -x 0 ,①又因为x 204+y 203=1,所以,y 20=3-3x 204,②将②代入①可得3-3x 204t +2 =3x 0+2 t -x 0 ,即t -2 x 0+2 2=0,∵x 0≠-2,则t =2,所以,直线PQ 过定点2,0 .(三)圆过定点问题圆过定点问题的常见类型是以AB 为直径的圆过定点P ,求解思路是把问题转化为PA ⊥PB ,也可以转化为PA ⋅PB =0【例4】(2022届广西“智桂杯”高三上学期大联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),与x 轴不重合的直线l 过焦点F ,l 与椭圆C 交于A ,B 两点,当直线l 垂直于x 轴时,AB =3.(1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为P ,PA ,PB 的延长线分别交直线x =4于M ,N 两点,证明:以MN 为直径的圆过定点.【解析】(1)椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (1,0),则半焦距c =1,当l ⊥x 轴时,弦AB 为椭圆的通径,即|AB |=2b 2a ,则有2b 2a =3,即b 2=32a ,而a 2=b 2+c 2,于是得a 2-32a -1=0,又a >0,解得a =2,b =3,所以椭圆C 的方程为:x 24+y 23=1.(2)依题意,直线AB 不垂直于y 轴,且过焦点F (1,0),设AB 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12x =my +1 得3m 2+4 y 2+6my -9=0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,因点P (-2,0),则直线PA 的方程为y =y 1x 1+2(x +2),令x =4,得M 4,6y 1x 1+2 ,同理可得N 4,6y 2x 2+2 ,于是有FM =3,6y 1x 1+2 ,FN =3,6y 2x 2+2 ,则FM ⋅FN =9+6y 1x 1+2⋅6y 2x 2+2=9+36y 1y 2my 1+3 my 2+3 =9+36y 1y 2m 2y 1y 2+3m y 1+y 2 +9=9+36⋅-93m 2+4-9m 23m 2+4+-18m 23m 2+4+9=9+36×(-9)36=0,因此,FM ⊥FN ,即F 在以MN 为直径的圆上,所以以MN 为直径的圆过定点F (1,0).(四)确定定点使某个式子的值为定值求解此类问题一般先设出点的坐标,然后把所给式子用所设点的横坐标或纵坐标表示,再观察该式子为定值的条件,确定所设点的坐标.【例5】(2023届山西省山西大学附属中学校高三上学期9月诊断)如图,椭圆C :x 2a 2+y 2b2=1((a >b >0),|A 1B 1|=7,F 1是椭圆C 的左焦点,A 1是椭圆C 的左顶点,B 1是椭圆C 的上顶点,且A 1F 1 =F 1O ,点P (n ,0)(n ≠0)是长轴上的任一定点,过P 点的任一直线l 交椭圆C 于A ,B 两点.(1)求椭圆C 的方程;(2)是否存在定点Q (x 0,0),使得QA ⋅QB 为定值,若存在,试求出定点Q 的坐标,并求出此定值;若不存在,请说明理由.【解析】(1)由已知知a 2+b 2=7a -c =c a 2=b 2+c 2 ,解得a =2b =3c =1,所以椭圆方程为x 24+y 23=1;(2)假设存在Q (x 0,0)满足题意,设A (x 1,y 1),B (x 2,y 2),QA =(x 1-x 0,y 1),QB=(x 2-x 0,y 2),①当直线l 与x 轴不垂直时,设l :y =k (x -n ),代入x 24+y 23=1并整理得(4k 2+3)x 2-8k 2nx +4k 2n 2-12=0∴x 1+x 2=8k 2n 4k 2+3,x 1x 2=4k 2n 2-124k 2+3QA ⋅QB=(x 1-x 0)(x 2-x 0)+y 1y 2=(x 1-x 0)(x 2-x 0)+k 2(x 1-n )(x 2-n )=(k 2+1)x 1x 2-(k 2n +x 5)(x 1+x 2)-x 20+k 2n 2=k 2+1 4k 2n 2-124k 2+3-k 2n +x 0 8k 2n 4k 2+3-x 20+k 2v 2=7n 2-8nx 0+4x 20-12 k 2+3x 20-124k 2+3 (*)(*)式是与k 无关的常数,则3(7n 2-8nx 0+4x 20-12)=4(3x 20-12)解得x 0=12n +7n 8,此时QA ⋅QB =x 20-4=12n +7n 82-4为定值;②当直线l 与x 垂直时,l :x =n ,A n ,31-n 24 ,B n ,-31-n 24,QA ⋅QB =(n -x 0)2-31-n 24 =x 20-4=12n +7n 82-4也成立,所以存在定点Q 12n +7n 8,0 ,使得QA ⋅QB =12n +7n 82-4为定值.(五)与定点问题有关的基本结论1.若直线l 与抛物线y 2=2px 交于点A ,B ,则OA ⊥OB ⇔直线l 过定点P 2p ,0 ;2.若直线l 与抛物线y 2=2px 交于点A ,B ,则k OA ⋅k OB =m ⇔直线l 过定点P p +m +p 2,0 ;3.设点P 2pt 02,2pt 0 是抛物线y 2=2px 上一定点,M ,N 是该抛物线上的动点,则PM ⊥PN ⇔直线MN 过定点Q 2p +2pt 02,-2pt 0 .4.设点A x 0,y 0 是抛物线y 2=2px 上一定点,M ,N 是该抛物线上的动点,则k AM ⋅k AN =m ⇔直线MN 过定点P x 0-2pm ,-y 0 ;5.过椭圆x 2a 2+y 2b2=1a >b >0 的左顶点P 作两条互相垂直的直线与该椭圆交于点A ,B ,则PA ⊥PB ⇔直线AB 过点Q -a a 2-b 2a 2+b 2,0;6.过双曲线x 2a 2-y 2b2=1a >0,b >0 的左顶点P 作两条互相垂直的直线与该椭圆交于点A ,B ,则PA ⊥PB ⇔直线AB 过点Q -a a 2+b 2a 2-b 2,0;7.设点P m ,n 是椭圆C :x 2a 2+y 2b2=1a >b >0 上一定点,点A ,B 是椭圆C 上不同于P 的两点,若k PA +k PB =λλ≠0 ,则直线AB 过定点m -2n λ,-n -2b 2ma 2λ;8.设点P m ,n 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 一定点,点A ,B 是双曲线C 上不同于P 的两点,若k PA +k PB =λλ≠0 ,则直线AB 过定点m -2n λ,-n +2b 2ma 2λ .【例6】(2023届山西省长治市高三上学期9月质量检测)已知点P 1,32 在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,且点P 到椭圆右顶点M 的距离为132.(1)求椭圆C 的方程;(2)若点A ,B 是椭圆C 上不同的两点(均异于M )且满足直线MA 与MB 斜率之积为14.试判断直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.【解析】(1)点P 1,32 ,在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上代入得:1a 2+94b2=1,点P 到椭圆右顶点M 的距离为132,则132=a -1 2+94,解得a =2,b =3,故椭圆C 的方程为x 24+y 23=1.(2)由题意,直线AB 的斜率存在,可设直线AB 的方程为y =kx +m (k ≠0),M 2,0 ,A x 1,y 1 ,B x 2,y 2 .联立y =kx +m3x 2+4y 2=12得3+4k 2 x 2+8km x +4m 2-12=0.Δ=64k 2m 2-43+4k 2 4m 2-12 =484k 2-m 2+3 >0.∴x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,∵直线MA 与直线MB 斜率之积为14.∴y 1x 1-2⋅y 2x 2-2=14,∴4kx 1+m kx 2+m =x 1-2 x 2-2 . 化简得4k 2-1 x 1x 2+4km +2 x 1+x 2 +4m 2-4=0,∴4k 2-1 4m 2-123+4k 2+4km +2 -8km 3+4k 2+4m -4=0, 化简得m 2-2km -8k 2=0,解得m =4k 或m =-2k .当m =4k 时,直线AB 方程为y =k x +4 ,过定点-4,0 .m =4k 代入判别式大于零中,解得-12<k <12(k ≠0).当m =-2k 时,直线AB 的方程为y =k x -2 ,过定点2,0 ,不符合题意. 综上所述:直线AB 过定点-4,0 .【例7】(2022届海南华侨中学高三上学期月考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点M 0,-1 是椭圆的一个顶点,△F 1MF 2是等腰直角三角形.(1)求椭圆的方程;(2)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=4,求证:直线AB 过定点12,1.【解析】(1)由题意可得b =1c =b a 2=b 2+c 2,解得a =2,b =1,所以椭圆的方程为x 22+y 2=1.(2)设A x 1,y 1 ,B x 2,y 2 .①当直线AB 斜率存在时,设直线AB 方程为y =kx +m ,联立y =kx +mx 22+y 2=1得2k 2+1 x 2+4km x +2m 2-2=0.由Δ=16k 2m 2-42k 2+1 2m 2-2 =82k 2-m 2+1 >0,得2k 2+1>m 2.所以x 1+x 2=-4km 2k 2+1,x 1⋅x 2=2m 2-22k 2+1.所以k 1+k 2=y 1+1x 1+y 2+1x 2=kx 1+m +1x 1+kx 2+m +1x 2=2k +m +1 x 1+x 2x 1x 2=4,即2k -2km m -1=4,所以kmm -1=k -2,即km =k -2 m -1 =km -k -2m +2,所以m =1-k 2,所以y =kx +m =kx +1-k 2=k x -12 +1,所以直线AB 过定点12,1 .②当直线AB 斜率不存在时,A x 1,y 1 ,B x 1,-y 1 ,则k 1+k 2=y 1+1x 1+-y 1+1x 1=2x 1=4,所以x 1=12,则直线AB 也过定点12,1 .综合①②,可得直线AB 过定点12,1 .三、跟踪检测1.(2023届江苏省金陵中学、海安中学高三上学期10月联考)在一张纸上有一个圆C :x +5 2+y 2=4,定点M 5,0 ,折叠纸片使圆C 上某一点M 1好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线M 1C 的交点为T .(1)求证:TC -TM 为定值,并求出点T 的轨迹C 方程;(2)设A -1,0 ,M 为曲线C 上一点,N 为圆x 2+y 2=1上一点(M ,N 均不在x轴上).直线AM ,AN 的斜率分别记为k 1,k 2,且k 2=-14k 1,求证:直线MN 过定点,并求出此定点的坐标.【解析】(1)由题意得TM =TM 1 ,所以TC -TM =TC -TM 1 =2<25=CM ,即T 的轨迹是以C ,M 为焦点,实轴长为2的双曲线,即C:x 2-y 24=1;(2)由已知得l AM :y =k 1x +1 ,l AN :y =k 2x +1 ,联立直线方程与双曲线方程y =k 1x +1x 2-y 24=1⇒4-k 21 x 2-2k 21x -k 21-4=0,由韦达定理得x A x M =-k 21-44-k 21,所以x M =k 21+44-k 21,即y M =k 1x M +1 =8k 14-k 21,所以M k 21+44-k 21,8k 14-k 21,联立直线方程与圆方程y =k 2x +1 x 2+y 2=1⇒1+k 22 x 2+2k 22x +k 22-1=0,由韦达定理得x A x N =k 22-11+k 22,所以x N =-k 22+11+k 22,即y N =k 2x N +1 =2k 21+k 22,因为k AN =-14k AM ,即k 2=-14k 1,所以N -k 21+1616+k 21,-8k 116+k 21,若直线MN 所过定点,则由对称性得定点在x 轴上,设定点T t ,0 ,由三点共线得k MT =k NT ,即8k 14-k 21k 21+44-k 21-t =-8k 116+k 21-k 21+1616+k 21-t ⇒k 21+4+k 21-4 t =k 21-16+k 21+16 t ⇒t =1,所以直线MN 过定点T 1,0 .2.(2023届广东省广东广雅中学高三上学期9月测试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22.圆O (O 为坐标原点)在椭圆C 的内部,半径为63.P ,Q 分别为椭圆C 和圆O 上的动点,且P ,Q 两点的最小距离为1-63.(1)求椭圆C 的方程;(2)A ,B 是椭圆C 上不同的两点,且直线AB 与以OA 为直径的圆的一个交点在圆O 上.求证:以AB 为直径的圆过定点.【解析】(1)设椭圆的长半轴为a ,短半轴为b ,半焦距为c ,由圆的性质,|PQ |≥|PO |-63当点P 在椭圆上运动时,当P 处于上下顶点时|PO |最小,故|PQ |≥|PO |-63≥b -63,即b -63=1-63依题意得c a =22b -63=1-63a 2=b 2+c2,解得a =2b =1c =1,所以C 的方程为x 22+y 2=1.(2)因为直线AB 与以OA 为直径的圆的一个交点在圆O 上,所以直线AB 与圆O 相切.(i )当直线AB 垂直于x 轴时,不妨设A 63,63,B 63,-63 ,此时OA ⋅OB=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .(ii )当直线AB 不垂直于x 轴时,设直线AB 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .因为AB 与圆O 相切,所以O 到直线AB 的距离|m |k 2+1=63,即3m 2-2k 2-2=0.由y =kx +m ,x 22+y 2=1,得2k 2+1 x 2+4km x +2m 2-2=0,所以x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1,OA ⋅OB=x 1x 2+y 1y 2=x 1x 2+kx 1+m kx 2+m =1+k 2 x 1x 2+km x 1+x 2 +m 2=1+k 2 2m 2-22k 2+1 +km -4km2k 2+1+m 2=1+k 2 2m 2-2 +km (-4km )+m 22k 2+1 2k 2+1=3m 2-2k 2-22k 2+1=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .综上,以AB 为直径的圆过点O .3.(2023届湖南省永州市高三上学期第一次考试)点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72.(1)求双曲线C 的方程;(2)A ,B 是双曲线C 上的两个动点(异于点P ),k 1,k 2分别表示直线PA ,PB 的斜率,满足k 1k 2=32,求证:直线AB 恒过一个定点,并求出该定点的坐标.【解析】(1)由题意点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72可得;16a 2-9b 2=1a 2+b 2a =72,解出,a =2,b =3,所以,双曲线C 的方程是x 24-y 23=1(2)①当直线AB 的斜率不存在时,则可设A n ,y 0 ,B n ,-y 0 ,代入x 24-y 23=1,得y 02=34n 2-3,则k 1k 2=y 0-3n -4⋅-y 0-3n -4=9-y 20(n -4)2=12-34n 2(n -4)2=32,即9n 2-48n +48=0,解得n =43或n =4,当n =4时,y 0=±3,A ,B 其中一个与点P 4,3 重合,不合题意;当n =43时,直线AB 的方程为x =43,它与双曲线C 不相交,故直线AB 的斜率存在;②当直线AB 的斜率存在时,设直线AB 的方程y =kx +m 代入x 24-y 23=1,整理得,3-4k 2 x 2-8km x -4m 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=8km 3-4k 2,x 1x 2=-4m 2+123-4k 2,由Δ=(-8km )2-43-4k 2 -4m 2-12 >0,∴m 2+3>4k 2,所以k 1k 2=y 1-3x 1-4⋅y 2-3x 2-4=kx 1+m -3x 1-4⋅kx 2+m -3x 2-4=k 2x 1x 2+k m -3 x 1+x 2 +(m -3)2x 1x 2-4x 1+x 2 +16=32所以,2k 2-3 x 1x 2+2km -6k +12 x 1+x 2 +2m 2-12m -30=0,即2k 2-3 ⋅-4m 2-123-4k 2+2km -6k +12 ⋅8km 3-4k 2+2m 2-12m -30=0,整理得3m 2+16k -6 m +16k 2-9=0,即3m +4k +3 m +4k -3 =0,所以3m +4k +3=0或m +4k -3=0,若3m +4k +3=0,则m =-4k +33,直线AB 化为y =k x -43 -1,过定点43,-1 ;若m +4k -3=0,则m =-4k +3,直线AB 化为y =k x -4 +3,它过点P 4,3 ,舍去综上,直线AB 恒过定点43,-1 4.(2023届陕西师范大学附属中学、渭北中学等高三上学期联考)已知抛物线C :y 2=2px (p >0),O 是坐标原点,F 是C 的焦点,M 是C 上一点,|FM |=4,∠OFM =120°.(1)求抛物线C 的标准方程;(2)设点Q x 0,2 在C 上,过Q 作两条互相垂直的直线QA ,QB ,分别交C 于A ,B 两点(异于Q 点).证明:直线AB 恒过定点.【解析】(1)由|FM |=4,∠OFM =120°,可得M p2+2,±23 ,代入C :12=2p p2+2=p 2+4p .解得p =2或p =-6(舍),所以抛物线的方程为:y 2=4x .(2)由题意可得Q (1,2),直线AB 的斜率不为0,设直线AB 的方程为x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,由y 2=4x x =my +n,得y 2-4my -4n =0,从而Δ=16m 2+16n >0,则y 1+y 2=4m y 1y 2=-4n.所以x 1+x 2=m y 1+y 2 +2n =4m 2+2n ,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=n 2,∵QA ⊥QB ,∴QA ⋅QB=x 1-1 x 2-1 +y 1-2 y 2-2 =0,故x 1x 2-x 1+x 2 +1+y 1y 2-2y 1+y 2 +4=0,整理得n 2-4m 2-6n -8m +5=0.即(n -3)2=4(m +1)2,从而n -3=2(m +1)或n -3=-2(m +1),即n =2m +5或n =-2m +1.若n =-2m +1,则x =my +n =my -2m +1=m (y -2)+1,过定点(1,2),与Q 点重合,不符合;若n =2m +5,则x =my +n =my +2m +5=m (y +2)+5,过定点(5,-2).综上,直线AB 过异于Q 点的定点(5,-2).5.(2023届四川省部分重点中学高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右顶点是M(2,0),离心率为12.(1)求椭圆C 的标准方程.(2)过点T (4,0)作直线l 与椭圆C 交于不同的两点A ,B ,点B 关于x 轴的对称点为D ,问直线AD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【解析】(1)由右顶点是M (2,0),得a =2,又离心率e =12=ca,所以c =1,所以b2=a2-c2=3,所以椭圆C的标准方程为x24+y23=1.(2)设A x1,y1,B x2,y2,显然直线l的斜率存在.直线l的方程为y=k x-4,联立方程组y=k x-4, 3x2+4y2=12消去y得4k2+3x2-32k2x+64k2-12=0,由Δ>0,得-12<k<12,所以x1+x2=32k24k2+3,x1x2=64k2-124k2+3.因为点D x2,-y2,所以直线AD的方程为y=y1+y2x1-x2x-x1+k x1-4.又y1+y2=k x1+x2-8,所以直线AD的方程可化为y=24kx2-x14k2+3x+kx1x1+x2-8x2-x1+k x1-4x2-x1x2-x1,即y=24kx2-x14k2+3x-24kx2-x14k2+3=24kx2-x14k2+3x-1,所以直线AD恒过点(1,0).(方法二)设A x1,y1,B x2,y2,直线l的方程为x=my+4,联立方程组x=my+4,3x2+4y2=12消去x得3m2+4y2+24my+36=0,由Δ>0,得m>2或m<-2,所以y1+y2=-24m3m2+4,y1y2=363m2+4.因为点D x2,-y2,则直线AD的方程为y=y1+y2x1-x2x-x1+y1.又x1-x2=my1+4-my2-4=m y1-y2,所以直线AD的方程可化为y=-y1+y2m y2-y1x-my1-4+y1=-y1+y2m y2-y1x+y1+y2my1+4+y1m y2-y1m y2-y1=-y1+y2m y2-y1x+2my1y2+4y1+y2m y2-y1=243m2+4y2-y1x-1,此时直线AD恒过点(1,0),当直线l的斜率为0时,直线l的方程为y=0,也过点(1,0).综上,直线AD恒过点(1,0).6.(2023届安徽省滁州市定远县高三上学期9月月考)设直线x=m与双曲线C:x2-y23=m(m>0)的两条渐近线分别交于A,B两点,且三角形OAB的面积为3.(1)求m的值;(2)已知直线l与x轴不垂直且斜率不为0,l与C交于两个不同的点M,N,M关于x轴的对称点为M ,F为C的右焦点,若M ,F,N三点共线,证明:直线l经过x轴上的一个定点.【解析】(1)双曲线C:x2-y23=m(m>0)的渐近线方程为y=±3x,则不妨令点A(m,3m),B(m,-3m),|AB|=23m,而点O到直线AB的距离为m,因此S△OAB=12⋅23m⋅m=3m2=3,解得m=1,所以m=1.(2)由(1)知,双曲线C 的方程为C :x 2-y 23=1,右焦点F (2,0),因直线l 与x 轴不垂直且斜率不为0,设直线l 与x 轴交于点(t ,0),直线l 的方程为y =k (x -t )(k ≠0),设M x 1,y 1 ,N x 2,y 2 ,则Mx 1,-y 1 ,由y =k (x -t )x 2-y 23=1消去y 并整理得3-k 2 x 2+2tk 2x -k 2t 2+3 =0,显然有3-k 2≠0且Δ=2tk 2 2+43-k 2 k 2t 2+3 >0,化简得k 2≠3且t 2-1 k 2+3>0,则x 1+x 2=-2tk 23-k 2,x 1x 2=-k 2t 2+33-k 2,FM=(x 1-2,-y 1),FN =(x 2-2,y 2),而M,F ,N 三点共线,即FM ⎳FN,则-y 1x 2-2 =y 2x 1-2 ,因此-k x 1-t x 2-2 =k x 2-t x 1-2 ,又k ≠0,有x 1-t x 2-2 +x 2-t x 1-2 =0,整理得2x 1x 2-(t +2)x 1+x 2 +4t =0,于是得2⋅-k 2t 2+33-k 2 -(t +2)-2tk 23-k 2+4t =0,化简得t =12,即直线l :y =k x -12 ,k ≠0过定点12,0 ,所以直线l 经过x 轴上的一个定点12,0 .7.(2023届江西省智慧上进高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS 长度的最小值为2,C 的离心率为22.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,P (2,0),且总存在实数λ∈R ,使得PF=λPA PA +PB PB,问:l 是否过一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由.【解析】(1)由线段RS 长度的最小值为2,得2b 2a=2,又c a =22,所以a 2-b 2a 2=12,解得a 2=2,b 2=1, 所以C 的标准方程为x 22+y 2=1.(2)由PF =λPA PA +PBPB ,可知PF 平分∠APB ,∴k PA +k PB =0.设直线AB 的方程为x =my +t ,A my 1+t ,y 1 ,B my 2+t ,y 2 ,由x =my +t x 2+2y 2=2得m 2+2 y 2+2mty +t 2-2=0,Δ=8m 2-t 2+2 >0,即m 2>t 2-2,∴y 1+y 2=-2mt m 2+2,y 1y 2=t 2-2m 2+2,∴k PA +k PB =y 1my 1+t -2+y 2my 2+t -2=0,∴2my 1y 2+t -2 y 1+y 2 =0,∴2m t 2-2 -t -2 ⋅2mt =0,整理得4m t -1 =0,∴当t =1时,上式恒为0,即直线l 恒过定点Q 1,0 .8.(2023届山西省高三上学期第一次摸底)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别是F 1-1,0 ,F 21,0 ,点A 0,b ,若△AF 1F 2的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点F 1作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若DE ⋅MN =0,证明:直线PQ 过定点.【解析】(1)由题设c =1,又|F 1F 2|=2c ,|AF 1|=|A 1F 2|=a ,若内切圆半径为r ,则外接圆半径为2r ,所以12r ×2(a +c )=12×2c ×b ,即r (a +c )=bc ,c 2+(2r -b )2=4r 2,而a 2=b 2+c 2,即a 2=4rb ,综上,a 2(a +c )=4b 2c ,即a 2(a +1)=4b 2=4a 2-4,可得a =2,所以a 2=4,b 2=3,则C :x 24+y 23=1.(2)当直线斜率都存在时,令DE 为x =ky -1,联立C :x 24+y 23=1,整理得:(3k 2+4)y 2-6ky -9=0,且Δ=144(k 2+1)>0,所以y D +y E =6k 3k 2+4,则x D +x E =k (y D +y E )-2=-83k 2+4,故P -43k 2+4,3k3k 2+4,由DE ⋅MN =0,即DE ⊥MN ,故MN 为x =-y k-1,联立C :x 24+y 23=1,所以3k 2+4 y 2+6k y -9=0,有y M +y N =-6k 3+4k 2,则x M +x N=-y M +y N k -2=-8k 23+4k 2,故Q -4k 23+4k 2,-3k3+4k 2 ,所以k PQ =7k 4(k 2-1),则PQ 为y -3k 3k 2+4=7k 4(k 2-1)x +43k 2+4,整理得k (7x +4)=4(k 2-1)y ,所以PQ 过定点-47,0 ;当一条直线斜率不存在时P ,Q 对应O ,F 1,故PQ 即为x 轴,也过定点-47,0 ;综上,直线PQ 过定点.9.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103 ,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0 .由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.10.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :y 2=2px p >0 的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点.(1)求p 的值;(2)是否存在定点T ,使得TA ⋅TB为常数?若存在,求出点T 的坐标及该常数;若不存在,说明理由.【解析】(1)因为F p 2,0 ,P 0,2 ,且点A 恰好为线段PF 中点,所以A p4,1 ,又因为A 在抛物线上,所以12=2p ⋅p4,即p 2=2,解得P =2(2)设T m ,n ,可知直线l 斜率存在;设l :y =kx +2,A x 1,y 1 ,B x 2,y 2 联立方程得:y 2=22xy =kx +2 ,所以k 2y 2-22y +42=0,所以y 1+y 2=22k ,y 1y 2=42k,又:TA ⋅TB =x 1-m x 2-m )+(y 1-n y 2-n=24y 21-m 24y 22-m +y 1-n y 2-n=18y 21y 22-24m y 21+y 22 +m 2-n y 1+y 2 +n 2=4k 2-24m 8k 2-82k +m 2+42k -22n k +n2=4-22m k 2+4m +42-22n k +m 2+n 2,令4m +42-22n =04-22m =0,解之得:m =2n =4 ,即T 2,4 ,此时TA ⋅TB =m 2+n 2=1811.(2023届江苏省百校联考高三上学期第一次考试)设F 为椭圆C :x 22+y 2=1的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当BF=2FA 时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使k QAk QB为定值(其中k QA ,k QB 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【解析】(1)设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,联立x =my +1x 2+2y 2=2,得m 2+2 y 2+2my -1=0,又因为BF=2FA ,所以y 1+y 2=-2m m 2+2y 1y 2=-1m 2+2y 2=-2y 1,解得m 2=27,y 1 =2m m 2+2=148,所以FA =1+m 2y 1 =328,即FA =328.(2)假设在x 轴上存在异于点F 的定点Q t ,0 t ≠1 ,使得k QAk QB为定值.设直线AB 的方程为x =my +1,联立x 22+y 2=1x =my +1,得m 2+2 y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以y 1+y 2=2my 1y 2.所以k QA k QB =y 1x 1-t y 2x 2-t=y 1⋅x 2-t y 2⋅x 1-t =y 1my 2+1-t y 2my 1+1-t =my 1y 2+(1-t )y 1my 1y 2+(1-t )y 2=2my 1y 2+2(1-t )y 12my 1y 2+2(1-t )y 2=(3-2t )y 1+y 2y 1+(3-2t )y 2.要使k QA k QB为定值,则3-2t 1=13-2t ,解得t =2或t =1(舍去),此时k QAk QB=-1.故在x 轴上存在异于F 的定点Q 2,0 ,使得k QAk QB为定值.12.(2022届辽宁省名校联盟高三上学期12月联考)已知抛物线C :y 2=2px p >0 的焦点为F ,点M (x 0,4)在C 上,且MF =5p2.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于A ,B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【分析】(1)利用抛物线定义求出x 0,进而求出p 值即可得解.(2)设出直线l 的方程x =my +n ,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系,再根据k MA ⋅k MB =1求解.【解析】(1)抛物线C :y 2=2px 的准线:x =-p 2,于是得MF =x 0+p 2=5p 2,解得x 0=2p ,而点M 在C 上,即16=4p 2,解得p =±2,又p >0,则p =2,所以M 的坐标为4,4 ,C 的方程为y 2=4x .(2)设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为x =my +n ,由x =my +ny 2=4x消去x 并整理得:y 2-4my -4n =0,则Δ=16m 2+n >0,y 1+y 2=4m ,y 1y 2=-4n ,因此,k MA ⋅k MB =y 1-4x 1-4⋅y 2-4x 2-4=y 1-4y 214-4⋅y 2-4y 224-4=4y 1+4⋅4y 2+4=1,化简得y 1y 2+4y 1+y 2 =0,即n =4m ,代入l 方程得x =my +4m ,即x -m y +4 =0,则直线l 过定点0,-4 ,所以直线l 过定点0,-4 .13.(2022届广东省茂名市五校联盟高三上学期联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.离心率等于63,点P 在y 轴正半轴上,△PF 1F 2为直角三角形且面积等于2.(1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由.【解析】(1)根据题意,由对称性得△PF 1F 2为等腰直角三角形,且∠F 1PF 2=90°,因为△PF 1F 2的面积等于2,所以F 1F 2 =22,即c =2,因为椭圆C 的离心率等于63,即e =63=2a,解得a =3,所以b 2=a 2-c 2=1,所以椭圆C 的标准方程为:x 23+y 2=1.(2)由(1)得P 0,2 ,设直线l 的方程为y =kx +m k ≠0 ,A x 1,y 1 ,B x 2,y 2 ,因为点A 关于y 轴的对称点在直线PB 上,所以直线PB 与直线PA 的斜率互为相反数,即k PB +k PA =0,因为k AP =y 1-2x 1,k BP =y 2-2x 2,所以y 1-2x 1+y 2-2x 2=0,整理得x 2(y 1-2)+x 1(y 2-2)=0又因为y 1=kx 1+m ,y 2=kx 2+m ,所以2kx 1x 2+m -2 x 1+x 2 =0,由y =kx +m x 2+3y 2=3消去y 得(3k 2+1)x 2+6km x +3m 2-3=0,所以Δ>0,即m 2<3k 2+1,x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-33k 2+1,所以2k ⋅3m 2-33k 2+1+(m -2)⋅-6mk3k 2+1 =0,整理得2k ⋅(3m 2-3)-6mk (m -2)=0,由于k ≠0,故解方程得m =22,此时直线l 的方程为y =kx +22,过定点0,22 所以直线l 恒过定点0,22 .14.(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a 、b 为正常数)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AM PQ=12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.【解析】(1)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),因为P 、Q 在双曲线上,所以x 12a 2-y 12b 2=1,x 22a 2-y 22b2=1,两式作差得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2=2y 0(y 1-y 2)b 2,即y 0(y 1-y 2)x 0(x 1-x 2)=b 2a2,即k 1·k 2=b 2a 2;(2)因为AM PQ=12,所以△APQ 是以A 为直角顶点的直角三角形,即AP ⊥AQ ;①当直线l 的斜率不存在时,设l :x =t ,代入x 2a 2-y 2b2=1得,y =±bt 2a 2-1,由|t -a |=b t 2a2-1得,(a 2-b 2)t 2-2a 3t +a 2(a 2+b 2)=0,即[(a 2-b 2)t -a (a 2+b 2)](t -a )=0,得t =a (a 2+b 2)a 2-b 2或a (舍),故直线l 的方程为x =a (a 2+b 2)a 2-b 2;②当直线l 的斜率存在时,设l :y =kx +m ,代入x 2a 2-y 2b2=1,得(b 2-k 2a 2)x 2-2km a 2x -a 2(m 2+b 2)=0,Δ=a 2b 2(m 2+b 2-k 2a 2)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2km a 2b 2-k 2a 2,x 1x 2=-a 2(m 2+b 2)b 2-k 2a 2;因为AP ⊥AQ ,所以AP ·AQ=0,即(x 1-a ,y 1)·(x 2-a ,y 2)=0,即x 1x 2-a (x 1+x 2)+a 2+y 1y 2=0,即x 1x 2-a (x 1+x 2)+a 2+(kx 1+m )(kx 2+m )=0,即(km -a )(x 1+x 2)+(k 2+1)x 1x 2+m 2+a 2=0,即-2km a 3-k 2a 2b 2-m 2a 2+m 2b 2-k 2a 4b 2-k 2a 2=0,即a 2(a 2+b 2)k 2+2ma 3k +m 2(a 2-b 2)=0,即[a (a 2+b 2)k +m (a 2-b 2)](ak +m )=0,所以k =-m (a 2-b 2)a (a 2+b 2)或k =-ma ;当k =-m a 时,直线l 的方程为y =-ma x +m ,此时经过A ,舍去;当k =-m (a 2-b 2)a (a 2+b 2)时,直线l 的方程为y =-m (a 2-b 2)a (a 2+b 2)x +m ,恒过定点a (a 2+b 2)a 2-b 2,0,经检验满足题意;综上①②,直线l 过定点a (a 2+b 2)a 2-b 2,0.15.已知抛物线C :y 2=2px p >0 的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,当l ⊥x 轴时,AB=2.(1)求抛物线C 的方程;(2)若直线l 交y 轴于点D ,过点D 且垂直于y 轴的直线交抛物线C 于点P ,直线PF 交抛物线C 于另一点Q .①是否存在定点M ,使得四边形AQBM 为平行四边形?若存在,求出定点M 的坐标;若不存在,请说明理由.②求证:S △QAF ⋅S △QBF 为定值.【解析】(1)当l ⊥x 轴时,易得AB =2p ,所以2p =2,解得p =1,所以抛物线C 的方程为y 2=2x ;(2)①解:易知直线l 的斜率存在且不为0,设直线l 的方程为x =my +12m ≠0 ,代入抛物线C 的方程y 2=2x ,并整理得y 2-2my -1=0,设A x 1,y 1 ,B x 2,y 2 ,由根与系数的关系得y 1+y 2=2m ,y 1y 2=-1.所以x 1+x 22=my 1+my 2+12=2m 2+12,所以线段AB 的中点N 的坐标为2m 2+12,m ,连接QM ,若四边形AQBM 为平行四边形,则N 是QM 的中点,易知D 0,-12m ,因此P 18m2,-12m ,设直线PQ 的方程为x =ty +12,代入抛物线C 的方程y 2=2x ,整理得y 2-2ty -1=0,所以y P y Q =-12m ⋅y Q=-1, 故y Q =2m ,因此Q 2m 2,2m ,故可得x M =2m 2+12×2-2m 2=1,y M =2m -2m =0,故点M 的坐标为M 1,0 ,因此存在定点M 1,0 ,使得四边形AQBM 为平行四边形;②证明:点Q2m2,2m到直线l:x=my+12的距离d=2m2-m⋅2m-12m2+1=12m2+1,由A x1,y1,F12,0,可得AF =m2+1y1 ,因此S△QAF=12AF⋅d=14y1 ,同理可得S△QBF=14y2 ,所以S△QAF⋅S△QBF=116y1y2=116,为定值.。
圆锥曲线中的定点问题及解决方法1. 引言1.1 背景介绍圆锥曲线是几何学中一个重要的概念,指的是由一个平面与一个圆锥体相交而得到的曲线。
在数学中,圆锥曲线包括圆、椭圆、双曲线和抛物线四种类型。
这些曲线在几何学和代数学中有着广泛的应用,涉及到许多重要的定理和性质。
圆锥曲线中的定点问题是指关于曲线上或曲线与其他几何图形的交点位置和性质的问题。
这些问题在实际应用中具有重要意义,例如在天文学中描述行星轨道的形状,或在工程学中设计湖面上的浮标位置等。
研究圆锥曲线中的定点问题不仅可以加深对这些曲线的理解,更可以拓展数学知识的应用范围。
通过研究不同的解决方法,可以进一步提高解决问题的能力和技巧,为数学领域的发展贡献力量。
深入探讨圆锥曲线中的定点问题具有重要的研究意义和价值。
1.2 问题提出圆锥曲线中的定点问题是一个重要而复杂的数学问题,其研究有着深远的理论和应用意义。
在圆锥曲线中,定点问题是指在已知曲线的情况下,找到曲线上满足一定条件的点的位置。
这种问题涉及到几何、代数和分析等多个数学领域,需要综合运用不同的数学方法来求解。
定点问题在圆锥曲线中具有广泛的实际应用。
比如在工程领域中,定点问题可以帮助我们确定某个位置的几何特性,从而设计出更加精确的结构。
在物理学中,定点问题可以帮助我们分析物体的运动轨迹和速度方向。
在计算机图形学和机器人领域中,定点问题也有着重要的应用价值。
研究圆锥曲线中的定点问题不仅有助于深化数学理论,还能推动相关领域的发展和创新。
在本文中,我们将介绍不同的解决方法来解决圆锥曲线中的定点问题,探讨其适用场景和未来研究方向,以期为相关领域的研究工作提供一定的参考和启发。
1.3 研究意义在圆锥曲线中,定点问题具有重要的研究意义。
通过对定点问题的研究,我们可以深入理解圆锥曲线的性质和特点,进一步探索其数学规律和几何意义。
定点是曲线上的固定点,对于圆锥曲线而言,定点的位置和性质对曲线的形状和特征具有决定性影响。
新高考数学二轮复习考点知识专题讲解圆锥曲线中的定点、定值问题【考点一】圆锥曲线中的定点问题【典例1】(2021·滨州一模)已知点A(0,-1),B(0,1),动点P 满足|PB → ||AB → |=PA →·BA → .记点P 的轨迹为曲线C. (1)求C 的方程;(2)设D 为直线y =-2上的动点,过D 作C 的两条切线,切点分别是E ,F.证明:直线EF 过定点.【变式1】本例若改为:已知点A(0,4),B(0,1),动点P 满足|PA|=2|PB|,设动点P 的轨迹为曲线E. (1)求曲线E 的轨迹方程;(2)若Q 是直线l :y =x -4上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.【变式2】已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的长轴与短轴长度之比为2∶ 3 ,焦距为2.(1)求椭圆C 的标准方程;(2)设左焦点为F ,l 为过点F 的一条直线,交椭圆C 于M 、N 两点,过点N 做x 轴的垂线,交椭圆C 于点P ,连接PM.求证直线PM 恒过定点.【考点二】圆锥曲线中的定值问题【典例2】(12分)(2021·新高考Ⅰ卷)在平面直角坐标系xOy 中,已知点F 1(-17 ,0),F 2(17 ,0),点M 满足|MF 1|-|MF 2|=2,记M 的轨迹为C. (1)求C 的方程;(2)设点T 在直线x =12 上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA|·|TB|=|TP|·|TQ|,求直线AB 的斜率与直线PQ 的斜率之和.【变式】已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)经过点( 2 ,1),离心率为22 .(1)求椭圆C 的方程;(2)设直线l :y =kx +t(t≠0)与椭圆C 相交于A ,B 两点,若以OA ,OB 为邻边的平行四边形OAPB 的顶点P 在椭圆C 上,求证:平行四边形OAPB 的面积为定值.参考答案【考点一】圆锥曲线中的定点问题【典例1】(2021·滨州一模)已知点A(0,-1),B(0,1),动点P 满足|PB → ||AB → |=PA →·BA → .记点P 的轨迹为曲线C. (1)求C 的方程;(2)设D 为直线y =-2上的动点,过D 作C 的两条切线,切点分别是E ,F.证明:直线EF 过定点.【解析】(1)设P(x ,y),则PA → =(-x ,-1-y),PB → =(-x ,1-y),AB → =(0,2),BA → =(0,-2),所以|PB → ||AB → |=PA → ·BA → ,(-x )2+(1-y )2 =1+y 化简得x 2=4y ,所以C 的方程为x 2=4y.(2)由题意可设D(t ,-2),E(x 1,y 1),F(x 2,y 2), 由题意知切线DE ,DF 的斜率都存在,由x 2=4y ,得y =x 24 ,则y′=x 2 ,所以k DE =x 12,直线DE 的方程为y -y 1=x 12 (x -x 1),即y -y 1=x 12 x -x 21 2,①因为E(x 1,y 1)在x 2=4y 上,所以x 21=4y 1,即x 21 2=2y 1,②将②代入①得x 1x -2y 1-2y =0, 所以直线DE 的方程为x 1x -2y 1-2y =0, 同理可得直线DF 的方程为x 2x -2y 2-2y =0,因为D(t ,-2)在直线DE 上,所以tx 1-2y 1+4=0,又D(t ,-2)在直线DF 上,所以tx 2-2y 2+4=0,所以直线EF 的方程为tx -2y +4=0, 故直线EF 过定点(0,2). 【变式1】本例若改为:已知点A(0,4),B(0,1),动点P 满足|PA|=2|PB|,设动点P 的轨迹为曲线E. (1)求曲线E 的轨迹方程;(2)若Q 是直线l :y =x -4上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由. 【解析】(1)设点P 的坐标为(x ,y),|PA|=2|PB|,即x 2+()y -42=2x 2+()y -12,整理得x 2+y 2=4,所以曲线E 的轨迹方程为x 2+y 2=4;(2)依题意,ON⊥QN,OM⊥QM,则M ,N 都在以OQ 为直径的圆F 上, 因为Q 是直线l :y =x -4上的动点,设Q(t ,t -4),则圆F 的圆心为⎝ ⎛⎭⎪⎫t 2,t -42 ,且经过坐标原点即圆的方程为x 2+y 2-tx-(t -4)y =0.又因为M ,N 在曲线E :x 2+y 2=4上,由⎩⎨⎧x 2+y 2=4x 2+y 2-tx -()t -4y =0, 可得tx +(t -4)y -4=0,即直线MN 的方程为tx +(t -4)y -4=0.由t∈R 且t(x +y)-4y -4=0可得,⎩⎨⎧x +y =04y +4=0 ,解得⎩⎨⎧x =1y =-1 ,所以直线MN 过定点(1,-1).【变式2】已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的长轴与短轴长度之比为2∶ 3 ,焦距为2.(1)求椭圆C 的标准方程;(2)设左焦点为F ,l 为过点F 的一条直线,交椭圆C 于M 、N 两点,过点N 做x 轴的垂线,交椭圆C 于点P ,连接PM.求证直线PM 恒过定点.【解析】(1)设椭圆的长轴长为2a ,短轴长为2b ,焦距为2c所以2a∶2b=2∶ 3 且2c =2,a 2=b 2+c 2,所以a =2,b = 3 ,c =1, 所以椭圆方程为x 24 +y 23=1;(2)由题意可知F(-1,0),直线l 的斜率存在,故设直线l 的方程为y =k(x +1),M(x 1,y 1),N(x 2,y 2),P(x 2,-y 2),所以⎩⎨⎧y =k (x +1)x 24+y23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0,所以x 1+x 2=-8k 23+4k 2 ,x 1x 2=4k 2-123+4k 2,所以PM 方程为:y -y 1=y 1+y 2x 1-x 2(x -x 1), 令y =0,则x =-y 1(x 1-x 2)y 1+y 2 +x 1=x 1y 2+x 2y 1y 1+y 2=k (x 1+1)x 2+k (x 2+1)x 1k (x 1+1)+k (x 2+1) =2x 1x 2+x 1+x 2x 1+x 2+2 =2×4k 2-123+4k 2-8k 23+4k 2-8k 23+4k 2+2 =-4故直线PM 恒过定点(-4,0). 【考点二】圆锥曲线中的定值问题【典例2】(12分)(2021·新高考Ⅰ卷)在平面直角坐标系xOy 中,已知点F 1(-17 ,0),F 2(17 ,0),点M 满足|MF 1|-|MF 2|=2,记M 的轨迹为C. (1)求C 的方程;(2)设点T 在直线x =12 上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA|·|TB|=|TP|·|TQ|,求直线AB 的斜率与直线PQ 的斜率之和. 【规范解答】(1)因为|MF 1|-|MF 2|=2,所以轨迹C 为双曲线右支,………………2分 c 2=17,2a =2,所以a 2=1, 由c 2=a 2+b 2,b 2=16,所以C 的方程为x 2-y 216=1(x >0). ………………4分(2)设T ⎝ ⎛⎭⎪⎫12,n ,设AB :y -n =k 1⎝ ⎛⎭⎪⎫x -12 ,联立⎩⎪⎨⎪⎧y -n =k 1⎝ ⎛⎭⎪⎫x -12x 2-y 216=1,消去y 得(16-k 21 )x 2+(k 21 -2k 1n)x -14k 21 -n 2+k 1n -16=0,……………6分所以x 1+x 2=k 21 -2k 1nk 21 -16,x 1x 2=14k 21 +n 2-k 1n +16k 21 -16 , |TA|=1+k 21 ⎝⎛⎭⎪⎫x 1-12 ,|TB|=1+k 21 ⎝⎛⎭⎪⎫x 2-12 ,…………………………8分所以|TA|·|TB|=(1+k 21)⎝⎛⎭⎪⎫x 1-12 ⎝ ⎛⎭⎪⎫x 2-12=(n 2+12)(1+k 21 )k 21 -16, 设PQ :y -n =k 2⎝⎛⎭⎪⎫x -12 ,同理|TP|·|TQ|=(n 2+12)(1+k 22 )k 22 -16,…………………………10分 因为|TA|·|TB|=|TP|·|TQ|,所以1+k 21 k 21 -16 =1+k 22 k 22 -16 ,1+17k 21 -16 =1+17k 22 -16,所以k 21 -16=k 22 -16,即k 21 =k 22 , 因为k 1≠k 2,所以k 1+k 2=0.所以C 的方程为x 2-y 216=1(x >0). …………………………12分【变式】已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)经过点( 2 ,1),离心率为22 .(1)求椭圆C 的方程;(2)设直线l :y =kx +t(t≠0)与椭圆C 相交于A ,B 两点,若以OA ,OB 为邻边的平行四边形OAPB 的顶点P 在椭圆C 上,求证:平行四边形OAPB 的面积为定值.【解析】(1)由题意⎩⎪⎨⎪⎧2a 2+1b 2=1c a =22a 2=b 2+c2解得a 2=4,b 2=2,所以椭圆方程为x 24 +y 22=1;(2)联立⎩⎨⎧y =kx +tx 24+y22=1,得(2k 2+1)x 2+4ktx +2(t 2-2)=0,所以Δ=(4kt)2-8(2k 2+1)(t 2-2)=8[2(2k 2+1)-t 2]>0. 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-4kt 2k 2+1 ,x 1x 2=2(t 2-2)2k 2+1,所以y 1+y 2=k(x 1+x 2)+2t =2t2k 2+1. 因为四边形OAPB 是平行四边形, 所以OP → =OA → +OB → =(x 1+x 2,y 1+y 2)=(-4kt 2k 2+1 ,2t 2k 2+1 ),则P(-4kt 2k 2+1 ,2t2k 2+1). 又因为点P 在椭圆上,所以4k 2t 2(2k 2+1)2 +2t 2(2k 2+1)2 =1,即t 2=2k 2+12.因为|AB|=1+k 2 |x 1-x 2|=1+k2(x1+x2)2-4x1x2=221+k22(2k2+1)-t22k2+1=231+k22k2+1.又点O到直线l的距离d=||t1+k2,所以平行四边形OAPB的面积S=2S△OAB=|AB|·d=23|t|2k2+1=62k2+12k2+1= 6 .即平行四边形OAPB的面积为定值 6 .。
圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e -+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求ⅠFBM 的面积;(2) Ⅰ记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
专题复习:圆锥曲线中的定点、定值问题一、方法指导圆锥曲线是高考数学中的重点和难点,其中定点问题更是难点中的难点。
通过对近几年高考数学试卷的分析,可以发现圆锥曲线定点问题一直是高频考点,且题目难度较大,对学生的数学思维和解题能力要求较高。
因此,在高三二轮复习中,学生需要加强对圆锥曲线定点问题的复习,掌握其解题方法和技巧。
二、知识梳理圆锥曲线的定义和性质直线与圆锥曲线的位置关系圆锥曲线的定点问题及其解法三、方法总结直接法:通过联立直线和圆锥曲线的方程,消元后得到一元二次方程,再利用根与系数的关系进行求解。
这种方法适用于直线过定点但不与x轴平行的情况。
参数法:引入参数来表示直线的斜率或截距,再通过参数的取值范围来确定定点。
这种方法适用于直线过定点且与x轴平行或重合的情况。
反证法:假设定点不是坐标原点,则过该定点的直线与圆锥曲线有两个交点。
根据韦达定理,这两个交点的横坐标之和等于两倍的定点横坐标,这与题意矛盾。
因此,定点必须是坐标原点。
这种方法适用于直线过定点且与x轴垂直的情况。
由特殊到一般法如果要解决的问题是一个定值(定点)问题,而题设条件又没有给出这个定值(定点),那么我们可以这样思考:由于这个定值(定点)对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定值(定点),明确了解决问题的目标,然后进行一般情况下的推理证明.3.利用推论解题推论1过圆锥曲线上的任意一点P(x0,y0)作互相垂直的直线交圆锥曲线于点A,B,则直线AB必过一定点(等轴双曲线除外).推论2过圆锥曲线的准线上任意一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB必过焦点.推论3过圆锥曲线外一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB已知且必过定点.推论4过圆锥曲线上的任意一点P(x0,y0)作斜率和为0的两条直线交圆锥曲线于A,B两点,则k AB为定值.推论5设点A,B是椭圆x 2a2+y2b2=1(a>b>0)上关于原点对称的两点,点P是该椭圆上不同于A,B两点的任意一点,直线PA,PB的斜率分别是k1,k2,则k1·k2=-b 2a2推论6过圆锥曲线的焦点F的直线(斜率存在)交圆锥曲线于P,Q两点,PQ的中垂线交x轴于点M,则MFPQ=e2,e为圆锥曲线的离心率.推论7过圆锥曲线的焦点F的直线交圆锥曲线于A,B两点,过点A,B分别作较近准线l 的垂线AA1,BB1,垂足分别为点A1,B1,设准线l与焦点所在轴交于点P,M为PF中点,则(1)AA1与BB1过点M;(2)A1F+B1F为定值.一、动直线过定点1、齐次式:例1、椭圆C :x 24+y 2=1,C (0,1),设直线l 不过点P ,且与C 交于A 、B 两点,若k PA +k PB =−1,证明:直线l 过定点.2、参数法:例2、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.3、特殊到一般例2、(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.4、待定系数法例3、椭圆C :22143x y +=左右顶点分别为A 、B ,k ≠0的直线与C 交于M 、N 两点,K BM =2K AN ,证明:直线过定点,并求出该定点.解:A (−2,0) B (2,0)设直线:y =kx +b (k ≠0) M (x 1,y 1) N (x 2,y 2) 直线与曲线联立得:(3+4k 2)x 2+8kbx +4b 2−120 则x 1x 2=4b 2−123+4k 2x 1+x 2=−8kb3+4k 2K BM =2K AN 所以y 1x1−2= 2y 2x 2−2x 2y 1+2y 1=2x 1y 2−4y 2即k x 1x 2−(4k +b )x 2+2(b −k )x 1−6b =0代入得:−12b 2k −8k 2b −12k −18b −(6k +8k 3+9b +12k 2b )x 2=0待定系数有:{−12b 2k −8k 2b −12k −18b =06k +8k 3+9b +12k 2b =0得(2k −b )(2k +3b ) =0若b =2k ,则过定点(−2,0),不成立; 若−3b =2k ,则过定点(23,0),成立.5、y 1−y 2或x 1−x 2型例4、已知双曲线C :x 23−y 2=1,过(3,0)的直线l 交C 于P 、Q 两点,过P 作直线x =1的垂线,垂足为A ,证明:AQ 过定点解:当l 斜率不存在时P (3,√2) Q (3,−√2) 或P (3,−√2) Q (3,√2)过P 作x =1垂线:A (1,√2)或A(1,−√2)此时AQ :y =√2x −2√2或y = −√2x +2√2 过定点(2,0) 当l 斜率存在时 l :y =k (x −3) P (x 1,y 1) Q (x 2,y 2) 与双曲线联立得:(1−3k 2)x 2+18k 2x −27k 2−3=0 有x 1x 2=−27k 2−31−3k 2x 1+x 2=−18k 21−3k 2AQ :y =y 1+y 2x 2−1x −x 2(y 2−y 1)x 2−1+y 2令y =0 x =y 2−x 2y 1y 2−y 1= −kx 1x 2+4kx 2−3k2−x 1)=−x 1x 2+4x 2−3x 2−x 1= 27k 2=31−3k 2−3+4x 2−(x 1+x 2−2x 2)= 36k 21−3k 2+4x 218k 21−3k 2+2x 2=2过定点(2,0)二、动点在定直线上的问题例3、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.解:(1)由题意知12c a =,所以2a c =,又222a b c =+, 所以3b c =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c =所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y , 所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x = 故点M 在定直线4x =上.三、其他曲线过定点例4、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx bx y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=, 解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--.在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.二、例题讲解例1A ,B 是抛物线y 2=2px (p >0)上的两点,且OA ⊥OB (O 为坐标原点),求证: (1)A ,B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一定点.例2如图,直线y =12x 与抛物线y =18x 2-4交于A ,B 两点,线段AB 的垂直平分线与直线y =-5交于Q 点. (1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A ,B )的动点时,求△OPQ 面积的最大值.例3如图,设P (x 1,y 1),Q (x 2,y 2)是抛物线y 2=2px (p >0)上的相异两点,Q ,P 到y 轴的距离的积为4,且OP →·OQ →=0. (1)求该抛物线的标准方程;(2)过Q 的直线与抛物线的另一交点为R ,与x 轴的交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.三、课时练习1.已知λ∈R ,则不论λ取何值,曲线C :λx 2-x -λy +1=0恒过定点( ) A .(0,1) B .(-1,1) C .(1,0) D .(1,1)2.若AB 是过椭圆x 2a 2+y 2b2=1(a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =( )A .-c 2a 2B .-b 2a 2C .-c 2b 2D .-a 2b23.直线y =kx -1与椭圆x 24+y 2a=1相切,则k ,a 的取值范围分别是( )A .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,12B .a ∈(0,1],k ∈⎝ ⎛⎭⎪⎫-12,12 C .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .a ∈(0,1],k ∈⎝ ⎛⎦⎥⎤-12,12 4.已知点P 是抛物线y 2=4x 上的点,设点P 到抛物线的准线的距离为d 1,到圆(x +3)2+(y-3)2=1上一动点Q 的距离为d 2,则d 1+d 2的最小值是( ) A .3 B .4 C .5 D .32+15.抛物线y 2=12x 与直线3x -y +5=0的最近距离为______.6.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是____.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,左顶点为A ,若|F 1F 2|=2,椭圆的离心率为e =12.(1)求椭圆的标准方程;(2)若P 是椭圆上的任意一点,求PF 1→·PA →的取值范围;(3)直线l :y =kx +m 与椭圆相交于不同的两点M ,N (均不是长轴的顶点),AH ⊥MN ,垂足为H ,且AH →2=MH →·HN →,求证:直线l 恒过定点.。
圆锥曲线中的定点,定值问题天台中学 张丽君教学目标:(1)知识目标:以直线和椭圆,抛物线为载体,结合其他条件,探究直线或曲线过定点问题,圆锥曲线中定值问题,体会数形结合,从特殊到一般,转化化归思想在解题中的指导作用。
(2)能力目标:培养学生分析能力,逻辑推理能力,运算能力;(3)情感目标:培养学生善于观察,胆大心细,锲而不舍,不畏艰难的品质。
教学重点与难点:(1)重点:探究直线或曲线过定点问题,圆锥曲线中定值问题,体会数形结合,从特殊到一般,转化化归思想在解题中的指导作用。
(2)难点:培养学生善于观察,胆大心细,锲而不舍,不畏艰难的品质。
教学内容:一.解读高考高考对本节知识的考查主要以如下形式呈现:(1)以解答题的形式考查,以直线和椭圆,抛物线为载体,结合其他条件,探究直线或曲线过定点问题,试题的设计往往不是单纯的数字问题,而是含有一个或多个参数。
(2)以解答题的形式出现,从圆锥曲线的概念入手,求某些定值问题,其实质是考查直线与椭圆,抛物线的位置关系,在一元二次方程,函数,向量,数列等知识交汇处命题,考查学生的逻辑推理能力,计算能力。
二.热身训练练习1. 已知A,B 分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,对于椭圆C 上异于A,B 的点P ,则=⋅PB PA k k ( C )A. 22a bB. 22b aC. 22a b -D. 22ba - 分析:由答案的唯一性,P 取特殊点短轴端点时即可快速求得答案。
变式 (1)若椭圆上的点 A,B 关于原点O 对称; ( C )(2) 椭圆改为双曲线12222=-by a x 。
( P 趋向无穷远处 ,即可求得答案为 A )练习2. 已知直线L 与抛物线)0(22>=p px y 有异于原点O 的两个不同的交点A, B.若=⋅OB OA k k -1,则直线L 必过定点——分析:由对称性知,定点必为X 轴上一点,再取L 垂直X 轴时的位置,解得A(2p,2p),故定点为(2p,0)。
圆锥曲线中的定点、定值、存在性问题[课时跟踪检测]1.(2019·某某九校联考)已知离心率为22的椭圆C :x 2a 2+y2b 2=1(a >b>0),过椭圆C 上点P (2,1)作两条互相垂直的直线,分别交椭圆于A ,B 两点.(1)求椭圆C 的方程;(2)求证:直线AB 过定点,并求出此定点的坐标. 解:(1)依题意有⎩⎪⎨⎪⎧4a 2+1b 2=1,c a =22,解得⎩⎪⎨⎪⎧a 2=6,b 2=3,所以椭圆C 的方程为x 26+y 23=1.(2)证明:易知直线AB 的斜率存在, 故设直线AB 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 26+y23=1得(2k 2+1)x 2+4mkx +2m 2-6=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4mk 2k 2+1,x 1x 2=2m 2-62k 2+1,由P A →·P B →=0,得(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0, 即(x 1-2)(x 2-2)+(kx 1+m -1)(kx 2+m -1)=0, 得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+m 2-2m +5=0, 则3m 2+8mk +4k 2-2m -1=0, 即(3m +2k +1)(m +2k -1)=0, 由直线AB 不过点P ,知m +2k -1≠0, 故3m +2k +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫23,-13.2.已知抛物线C 1:x 2=4y 的焦点为F ,过抛物线C 2:y =-18x 2+3上一点M 作抛物线C 2的切线l ,与抛物线C 1交于A ,B 两点.(1)记直线AF ,BF 的斜率分别为k 1,k 2,若k 1·k 2=-35,求直线l 的方程;(2)是否存在正实数m ,使得对任意点M ,都有|AB |=m (|AF |+|BF |)成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)设M (x 0,y 0),由y =-x 28+3,得y ′=-x4,则切线l 的斜率为k =-x 04. 切线l 的方程为y =-x 04(x -x 0)+y 0=-x 04x +x 204+y 0=-x 04x -2y 0+6+y 0,即y =-x 04x -y 0+6.与x 2=4y 联立,消去y 得x 2+x 0x +4y 0-24=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=-x 0,x 1x 2=4y 0-24,则y 1+y 2=-x 04(x 1+x 2)-2y 0+12=x 204-2y 0+12=-4y 0+18,y 1y 2=x 21x 2216=(y 0-6)2,则由k 1·k 2=y 1-1x 1×y 2-1x 2=y 1y 2-(y 1+y 2)+1x 1x 2=(y 0-6)2-(-4y 0+18)+14y 0-24=-35,得5y 20-28y 0+23=0,解得y 0=1或y 0=235.∵x 20=-8(y 0-3)≥0,∴y 0≤3,故y 0=1,∴x 0=±4. 则直线l 的方程为y =±x +5.(2)由(1)知直线l 的方程为y =-x 04x -y 0+6,且x 1+x 2=-x 0,x 1x 2=4y 0-24,则|AB |=1+x 2016|x 1-x 2|=1+x 2016·(x 1+x 2)2-4x 1x 2=16+x 204·x 20-4(4y 0-24), 即|AB |=16-8y 0+244·-8y 0+24-16y 0+96=23(5-y 0),而|AF |+|BF |=(y 1+1)+(y 2+1)=-4y 0+20=4(5-y 0), 则|AB |=32(|AF |+|BF |), 故存在正实数m =32,使得对任意点M ,都有|AB |=32(|AF |+|BF |)成立. 3.(2019·嵊州高三期末)已知抛物线y 2=2x ,P (1,0),M (0,a ),其中a >0,过点M 作抛物线的切线,切点为A (不同于原点O ),过点A ,P 作直线交抛物线于点B ,过点M ,P 作直线交抛物线于点C ,D .(1)求证:直线MA ,MP 的斜率之积为定值;(2)若△BCD 的面积为2716,某某数a 的值.解:(1)证明:设A (2m 2,2m )(m ≠0),则k AM =2m -a 2m 2,所以直线AM :y =2m -a 2m 2x +a ,即x =2m 22m -a ·(y -a ),与抛物线方程联立得y 2-4m 22m -a y +4m 2a 2m -a=0, 因为直线AM 与抛物线相切,所以Δ=16m 4(2m -a )2-16m 2a2m -a =0,解得m =a , 所以A (2a 2,2a ),所以k MA ·k MP =2a -a 2a 2-0·a -00-1=-12,为定值. (2)易得k CD =k MP =-a ,所以直线CD :y =-ax +a ,即x =-1ay +1,与抛物线方程联立得y 2+2ay -2=0,设C (x 1,y 1),D (x 2,y 2), |y 1-y 2|=4a 2+8=22a 2+1a, |CD |=1+1a2·|y 1-y 2|=2(a 2+1)·(2a 2+1)a2, 又k AB =2a 2a 2-1,所以直线AB :y =2a 2a 2-1(x -1),即x =2a 2-12a y +1,与抛物线方程联立得y 2-2a 2-1ay -2=0,所以y A y B =-2,所以y B =-1a ,所以B ⎝ ⎛⎭⎪⎫12a2,-1a ,所以点B 到直线CD 的距离d =12a+a a 2+1,所以S △BCD =⎝ ⎛⎭⎪⎫12a +a 2a 2+1a 2=2716,整理得(2a 2+1)3a 3=278,所以2a 2+1a=32,解得a =2或a =-2(舍去).4.如图,A 为椭圆x 22+y 2=1的下顶点,过点A 的直线l 交抛物线x 2=2py (p >0)于B ,C 两点,C 是AB 的中点.(1)求证:点C 的纵坐标是定值;(2)过点C 作与直线l 倾斜角互补的直线l ′交椭圆于M ,N 两点,p 为何值时,△BMN 的面积最大?解:(1)证明:易知A (0,-1),不妨设B ⎝ ⎛⎭⎪⎫t ,t 22p ,则C ⎝ ⎛⎭⎪⎫t 2,t 2-2p 4p ,代入抛物线方程得⎝ ⎛⎭⎪⎫t 22=2p ·t 2-2p 4p ,得t 2=4p ,∴y C =4p -2p 4p =12,故点C 的纵坐标为定值.(2)∵点C 是AB 的中点,∴S △BMN =S △AMN . 设直线l 的斜率为k ,直线l ′的斜率为k ′, 则k =12-(-1)t2=3t ,k ′=-3t,∴直线l ′的方程为y -12=-3t ⎝ ⎛⎭⎪⎫x -t 2,即y =-3t x +2,不妨记m =-3t ,则l ′:y =mx+2,代入椭圆方程整理得(2m 2+1)x 2+8mx +6=0, 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8m 2m 2+1,x 1x 2=62m 2+1,|MN |=1+m 2|x 1-x 2|=22·1+m 2·2m 2-32m 2+1,又A 到直线MN 的距离d =3m 2+1,所以S △AMN =12·|MN |·d =322m 2-32m 2+1=322m 2-3+42m 2-3≤324. 当且仅当2m 2-3=42m 2-3时取等号,解得m 2=72,所以t 2=9m 2=187,从而p =t 24=914, 故当p =914时△BMN 的面积最大.5.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由. 解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1. 由e =c a =22得a =2,所以b =1, 所以椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0), k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 2x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0,① 由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根, 由根与系数的关系得,x 1+x 2=-4km 1+2k 2,x 1x 2=2(m 2-1)1+2k 2,由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0, 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).。
圆锥曲线中的定点、定值问题
1、几个常见的定点模型
若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.
(1)对于椭圆()上异于右顶点的两动点,,
以为直径的圆经过右顶点,则直线过定点.
同理,当以为直径的圆过左顶点时,直线过定点.
(2)对于双曲线上异于右顶点的两动点,,以为直径的圆经过右顶点,则直线过定点.同理,对于左顶点,则定点为.
(3)对于抛物线上异于顶点的两动点,,
若,则弦所在直线过点.
同理,抛物线上异于顶点的两动点,,若,则直线过定点.
2、几个常见的定值模型
在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点(非顶点)与曲线上的两动点,满足直线与的斜率互为相反数(倾斜角互补),则直线的斜率为定值.
(1)在椭圆中:已知椭圆,定点()在椭圆上,设,是椭圆上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(2)在双曲线:中,定点()在双曲线上,设,是双曲线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(3)在抛物线:,定点()在抛物线上,设,是抛物线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
3、解题导语
解决定点、定值问题的关键是检测数学运算的能力,所以只
要细致、耐心的计算就可以得到答案。
又因为此种问题找得分点比较容易,所以千万不要放弃。
圆锥曲线中的定点问题及解决方法全文共四篇示例,供读者参考第一篇示例:圆锥曲线可以说是数学中一个非常有趣且重要的概念,它是指在平面上的一条曲线,在解析几何中有着广泛的应用。
在圆锥曲线中,定点问题是一个非常常见的问题,它涉及到固定一个点或多个点,然后通过这些点来确定曲线的形状。
在本文中,我们将探讨圆锥曲线中的定点问题及其解决方法。
我们来介绍一下圆锥曲线中的常见曲线类型,包括圆、椭圆、双曲线和抛物线。
这些曲线都可以通过圆锥截面的方式来定义,它们在平面上的形状各有特点,而且在不同领域中都有着广泛的应用。
在解决圆锥曲线中的定点问题时,我们通常采用的方法是利用几何性质和数学公式来推导和计算。
下面我们以圆锥曲线中的圆和椭圆为例,来详细介绍一下定点问题的解决方法。
我们来看看圆的定点问题。
对于圆,我们知道它的定点是圆心,通过圆心我们可以确定圆的形状和大小。
如果要确定一个圆,我们只需要确定两个点即可,其中一个是圆心,另一个是圆上的一个点,通过这两个点我们就可以确定圆的位置和形状。
在解决圆锥曲线中的定点问题时,我们可以利用圆锥曲线的方程和性质来进行推导和计算,也可以通过几何分析和图形划分来解决问题。
我们还可以通过数学软件和计算工具来进行求解,提高求解的效率和准确性。
圆锥曲线中的定点问题是一个非常有趣和有挑战性的问题,通过研究和解决这些问题,我们可以进一步了解圆锥曲线的性质和特点,提高数学分析和推理的能力。
希望本文对大家对圆锥曲线中的定点问题有所启发和帮助,欢迎大家深入研究和探讨这一领域。
谢谢!第二篇示例:圆锥曲线是平面解析几何学中的重要内容,其中的定点问题一直是学习者们所关注的重点之一。
在圆锥曲线中,定点问题涉及到曲线上或者曲线的参数方程中的某一点,通常需要通过计算或者推导来确定这一点的具体位置或者性质。
在本文中,将讨论圆锥曲线中的定点问题及解决方法。
圆锥曲线包括圆、椭圆、双曲线以及抛物线四种类型,每种类型都有其特定的定点问题。
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。