开关电源原边反馈技术
- 格式:docx
- 大小:11.37 KB
- 文档页数:3
一起设计PSR原边反馈开关电源变压器
PSR原边反馈设计开关电源变压器是工程师们常用的方法,对于新手来说,可能会存在很多疑惑,或不熟悉的地方,小编就针对这一情况和朋友们分享一款利用PSR原边反馈的开关电源变压器设计方法。
全电压输入,输出5V/1A,符合能源之星2之标准,符合IEC60950和
EN55022安规及EMC标准。
因充电器为了方便携带,一般都要求小体积,所以针对5W的开关电源充电器一般都采用体积较小的EFD-15和EPC13的变压器,此类变压器按常规计算方式可能会认为CORE太小,做不到,如果现在还有人这样认为,那你就OUT了。
磁芯已确定,下面就分别讲讲采用EFD15和EPC13的变压器设计5V/1A 5W的电源变压器。
(1)EFD15变压器设计
目前针对小变压器磁芯,特别是小公司基本都无从得知CORE的B/H曲线,因PSR线路对变压器漏感有所要求。
所以从对变压器作最小漏感设计入手:已知输出电流为1A,5W功率较小,所以铜线的电流密度选8A/mm2,次级铜线直径为:SQRT(1/8/3.14)*2=0.4mm。
通过测量或查询BOBBIN资料可以得知,EFD15的BOBBIN的幅宽为9.2mm。
因次级采用三重绝缘线,0.4mm 的三重绝缘线实际直径为0.6mm.
为了减小漏感把次级线圈设计为1整层,次级杂数为:9.2/0.6mm=15.3Ts,取15Ts.
因IC内部一般内置VDS耐压600~650V的MOS,考虑到漏感尖峰,需留50~100V的应力电压余量,所以反射电压需控制在100V以内,得:。
FSR原边反馈反激式变换器及原理FSR(Flyback Switching Regulator)原边反馈反激式变换器是一种常见的开关电源拓扑结构,可以同时实现输入输出电压的隔离和转换。
本文将详细介绍FSR原边反馈反激式变换器的工作原理及其特点。
[图片]在FSR原边反馈反激式变换器中,电源输入通过变压器的一侧加入,并由输入电容进行滤波。
控制IC产生的PWM信号控制MOSFET的开关,将输入电压转换为短暂的高功率矩形脉冲,并传输给变压器。
由于变压器的变比,高功率脉冲信号被变压器转换为低功率矩形脉冲信号,然后通过输出二次侧的整流和滤波电路得到所需的输出电压。
1.输入滤波和整流:电源输入先通过输入电容进行滤波,降低电源噪声。
然后,经过整流电路将交流输入转换为直流输入。
2.反激开关:控制IC通过控制频率和占空比产生PWM信号,控制功率MOSFET的通断。
当MOSFET导通时,电源输入电源通过变压器传递到输出端;当MOSFET截止时,输出端的电压会产生反向电压,称为反激。
3.变压器:变压器是FSR变换器的核心组件。
它以一定的变比将输入电压转换为输出电压。
当功率MOSFET导通时,输入脉冲能量被储存在变压器的磁场中;当MOSFET截止时,储存在磁场中的能量通过变压器的绕组耦合到二次侧,并转换为输出电压。
4.输出整流和滤波:由于输出是交流信号,需要进行整流和滤波处理,将其转换为直流输出。
通常,采用整流二极管和输出电容来实现。
1.隔离性:由于变压器的存在,输入与输出之间具有隔离性,使输出与输入之间不会存在电气连接。
这保证了输出的安全性和稳定性。
2.最小化元件数量:FSR变换器相对于其他开关电源结构,所需元件数量较少,减小了系统的复杂性。
3.简化控制电路:FSR变换器采用原边反馈控制方式,可实现电流和电压双回路控制,简化了控制电路的设计。
4.可实现多输出:FSR变换器可通过变压器的设计来实现多种输出,满足不同应用的需求。
PSR原边反馈开关电源设计之一——变压器设计目前比较流行的低成本、超小占用空间方案设计基本都是采用PSR原边反馈反激式,通过原边反馈稳压省掉电压反馈环路(TL431和光耦)和较低的EMC辐射省掉Y电容,不仅省成本而且省空间,得到很多电源工程师采用。
比较是新技术,目前针对PSR原边反馈开关电源方案设计的相关讯息在行业中欠缺。
下面结合实际来讲讲我对PSR原边反馈开关电源设计的“独特”方法——以实际为基础。
要求条件:全电压输入,输出5V/1A,符合能源之星2之标准,符合IEC60950和EN55022安规及EMC标准。
因充电器为了方便携带,一般都要求小体积,所以针对5W的开关电源充电器一般都采用体积较小的EFD-15和EPC13的变压器,此类变压器按常规计算方式可能会认为CORE太小,做不到,如果现在还有人这样认为,那你就OUT了。
磁芯以确定,下面就分别讲讲采用EFD15和EPC13的变压器设计5V/1A 5W的电源变压器。
1. EFD15变压器设计目前针对小变压器磁芯,特别是小公司基本都无从得知CORE的B/H曲线,因PSR线路对变压器漏感有所要求。
所以从对变压器作最小漏感设计入手:已知输出电流为1A,5W功率较小,所以铜线的电流密度选8A/mm2,次级铜线直径为:SQRT(1/8/3.14)*2=0.4mm。
通过测量或查询BOBBIN资料可以得知,EFD15的BOBBIN的幅宽为9.2mm。
因次级采用三重绝缘线,0.4mm的三重绝缘线实际直径为0.6mm.为了减小漏感把次级线圈设计为1整层,次级杂数为:9.2/0.6mm=15.3Ts,取15Ts.因IC内部一般内置VDS耐压600~650V的MOS,考虑到漏感尖峰,需留50~100V的应力电压余量,所以反射电压需控制在100V以内,得:(Vout+VF)*n<100,即:n<100/(5+1),n<16.6,取n=16.5,得初级匝数NP=15*16.5=247.5取NP=248,代入上式验证,(Vout+VF)*(NP/NS)<100,即(5+1)*(248/15)=99.2<100,成立。
电源设计中的原边反馈控制和副边反馈控制方案分析-技术方案一、原边反馈控制、副边反馈控制方案分析PSR(Primary Side Regulator)即原边反馈,用于反激式开关电源中,其利用辅助线圈来提取副边线圈上的输出电压信号。
由于辅助线圈与副边线圈上的电压与匝数比有关,且在副边线圈去磁结束点(即线圈上的电流下降至零时),电源输出电压等于副边线圈上的电压,采样该反馈电压信号,经控制芯片处理得到理想的PWM控制信号,用于控制原边侧功率管的开关,功率管的开关时间决定了变压器上能量储存的多少,从而也直接影响了副边输出电压的大小。
利用这一系列的反馈关系,终可得到稳定的电压输出。
SSR(Secondary Side Regulator)即副边反馈,副边反馈控制技术是发展较早的反激式开关电源控制技术,其对输出电压的提取过程直接在变压器的副边电压输出端完成,因此需要在副边增加光耦、TL431及相关阻容元件,其中TL431为误差放大器,能够实时监测输出电压,并将监测结果以电流的形式通过光耦反馈至原边,同时保证输入端与输出端的隔离。
二、两者的比较如下为思睿达原边反馈控制(PSR)方案和副边反馈控制(SSR)方案。
C6267原边反馈控制方案C5269S副边反馈控制方案三、原边、副边方案如何选?比如在充电器领域,直接对电池充电的应用,一般会对空载电压精度要求高,可以选择副边电源IC+恒流芯片来做。
通过电池管理芯片,对电池充电的。
因为电池管理芯片会有过压和过流保护,可以直接选用原边方案来进行,这样成本相对于副边的方案来说会降低很多。
有时候也可以和客户讨论客户的设计方案来降低成本,引导客户开案。
如在LED灯领域,每串灯珠的前面没有加上一个限流电阻。
那么,在电源线路设计中,用副边方案的IC+高精度恒流方案来做,价格较高;用原边方案,原边的恒流精度在生产中很难达到客户的要求。
但是在每串灯珠的前面加上一个限流电阻,那么就可以直接用原边方案来进行设计,既可达到客户要求,又可以节约成本。
原边控制(Primary Side Control, PSC)开关电源是一种利用变压器原边侧的信息进行反馈控制,以实现恒压(CV)或恒流(CC)输出的开关电源技术。
它的主要特点是不需要在变压器次级进行反馈采样,而是通过对原边电压或电流的检测和控制,间接调整输出电压的稳定。
原边控制开关电源的工作原理:1. 开关动作与电压转换:开关电源的核心部分是开关管,它以高频脉冲形式开关,将输入的交流或直流电压转换为高频脉冲电压。
此脉冲电压通过变压器进行升压或降压变换,然后通过整流和滤波得到所需的直流输出电压。
2. 原边反馈机制:在原边控制开关电源中,通过在变压器原边增设一个反馈网络,该网络通常由电阻、电容以及可能的感应器(如辅助绕组)组成。
原边电压或电流经此反馈网络采样,并将信号传递给控制器(如脉宽调制器PWM)。
3. 控制逻辑与调节:控制器根据反馈信号调节开关管的开关占空比(即开闭时间的比例),从而改变变压器原边的能量传递效率,进而影响次级侧的输出电压或电流。
原边控制技术通常采用算法估算次级侧的输出状态,例如通过监测原边电流峰值或辅助绕组电压,利用匝比换算关系间接得到次级侧的信息。
4. 优点与挑战:原边控制开关电源的优势在于结构简单,减少了次级侧反馈电路的成本和复杂性,尤其适用于小型化和低成本应用。
然而,由于是间接反馈,其控制精度受到变压器参数和负载变化的影响,特别是在负载变动较大时,控制难度增大,因此常需要采用较为复杂的数字控制算法来提高稳压精度和负载调整率。
结构示例:- 在某些原边反馈设计中,会使用辅助绕组来获取原边反馈信号,这个绕组的电压与次级绕组电压有一定比例关系,通过检测和控制这个辅助电压,就可以间接控制次级的输出电压。
- 另外,有些原边反馈开关电源芯片集成了初级峰值电流检测功能,可以根据原边电流的变化情况,调整开关频率和占空比,实现恒流输出或在电压模式下调整占空比实现恒压输出。
总的来说,原边控制开关电源通过巧妙的电路设计和先进的控制策略,实现了对开关电源输出电压的有效控制,广泛应用于各类电子设备和电源系统中。
原边反馈电源方案的设计原边反馈(PSR)的AC/DC控制技术是最近10年间发展起来的新型AC/DC控制技术,与传统的副边反馈的光耦加431的结构相比,其最大的优势在于省去了这两个芯片以及与之配合工作的一组元器件,这样就节省了系统板上的空间,降低了成本并且提高了系统的可靠性。
在手机充电器等成本压力较大的市场,以及LED驱动等对体积要求很高的市场具有广阔的应用前景。
在省去了这些元器件之后,为了实现高精度的恒流/恒压(CC/CV)特性,必然要采用新的技术来监控负载、电源和温度的实时变化以及元器件的同批次容差,这就涉及到初级(原边)调节技术、变压器容差补偿、线缆补偿和EMI优化技术。
初级调节的原理是通过精确采样辅助绕组(NAUX)的电压变化来检测负载变化的信息。
当控制器将MOS管打开时,变压器初级绕组电流ip从0线性上升到ipeak,公式为()。
此时能量存储在初级绕组中,当控制器将MOS管关断后,能量通过变压器传递到次级绕组,并经过整流滤波送到输出端VO。
在此期间,输出电压VO 和二极管的正向电压VF 被反射到辅助绕组NAUX,辅助绕组NAUX 上的电压在去磁开始时刻可由公式表示(),其中VF是输出整流二极管的正向导通压降,在去磁结束时刻可由公式表示,由此可知,在去磁结束时间点,次级绕组输出电压与辅助绕组具有线性关系,只要采样此点的辅助绕组的电压,并形成由精确参考电压箝位的误差放大器的环路反馈,就可以稳定输出电压VO。
这时的输出电流IO由公式表示,其中VCS是CS脚上的电压,其他参数意义如图1所示。
这是恒压(CV)模式的工作原理。
与此同时,原边反馈系统还会面临线缆压降的问题。
因为系统不是直接采样输出端(次级绕组整流后)的电压,而是通过采样辅助绕组的去磁结束点的电压来控制环路反馈的,因此,当输出线较长或者线径较细时,在负载线上会存在较大的内阻(例如在充电器方案中)。
在负载电流变化较大的情况下,输出线的末端电压也会有较大变化。
PSR原边反馈开关电源变压器设计目前比较流行的低成本、超小占用空间方案设计基本都是采用PSR原边反馈反激式,通过原边反馈稳压省掉电压反馈环路(TL431和光耦)和较低的EMC辐射省掉Y电容,不仅省成本而且省空间,得到很多电源工程师采用。
比较是新技术,目前针对PSR原边反馈开关电源方案设计的相关讯息在行业中欠缺。
下面结合实际来讲讲我对PSR原边反馈开关电源设计的“独特”方法——以实际为基础。
要求条件:全电压输入,输出5V/1A,符合能源之星2之标准,符合IEC60950和EN55022安规及EMC标准。
因充电器为了方便携带,一般都要求小体积,所以针对5W的开关电源充电器一般都采用体积较小的EFD-15和EPC13的变压器,此类变压器按常规计算方式可能会认为CORE太小,做不到,如果现在还有人这样认为,那你就OUT了。
磁芯以确定,下面就分别讲讲采用EFD15和EPC13的变压器设计5V/1A 5W的电源变压器。
1. EFD15变压器设计目前针对小变压器磁芯,特别是小公司基本都无从得知CORE的B/H曲线,因PSR线路对变压器漏感有所要求。
所以从对变压器作最小漏感设计入手:已知输出电流为1A,5W功率较小,所以铜线的电流密度选8A/mm2,次级铜线直径为:SQRT(1/8/3.14)*2=0.4mm。
通过测量或查询BOBBIN资料可以得知,EFD15的BOBBIN的幅宽为9.2mm。
因次级采用三重绝缘线,0.4mm的三重绝缘线实际直径为0.6mm.为了减小漏感把次级线圈设计为1整层,次级杂数为:9.2/0.6mm=15.3Ts,取15Ts.因IC内部一般内置VDS耐压600~650V的MOS,考虑到漏感尖峰,需留50~100V的应力电压余量,所以反射电压需控制在100V以内,得:(Vout+VF)*n<100,即:n<100/(5+1),n<16.6,取n=16.5,得初级匝数NP=15*16.5=247.5取NP=248,代入上式验证,(Vout+VF)*(NP/NS)<100,即(5+1)*(248/15)=99.2<100,成立。
开关电源原边反馈技术
原边反馈(PSR)简介
●在小功率消费类电子应用中,反激式电源是主流,因为反激式电源非常适合小功率段,同时天然提供了隔离的效果。
●隔离后,如果要检测输出的情况,需要用隔离元件,比如光耦等,这样就增加了电源的成本,光耦本身的寿命也会成为电源的瓶颈,基于此,开发出了原边反馈技术。
-原边反馈不从输出直接采样,而是从初级线圈采样,通过初级线圈的情况来计算次级线圈的情况,进一步推算输出的情况。
-部分信息难以从初级线圈直接得到,因此通常还使用一个辅助线圈,辅助线圈和初级线圈共地,和次级隔离
辅助线圈的用途
●增加辅助线圈会增加成本和复杂度,因此,最好能让辅助线圈完成更多的工作,一般辅助线圈都同时做2件事情:
-反映初级线圈和次级线圈的情况,辅助线圈通过电阻分压,将原边和副边的电压情况反映在VSES点,此时辅助线圈和原边/副边构成变压器。
和初级线圈形成一个反激结构,给IC供电,由于反激结构本身无法恒压,因此要加一个限压的二极管。
不使用辅助线圈是否可行
●如果不要求辅助线圈供电,那么是否可以用其他检测方法,比如在初级线圈上检测来做原边反馈?
●理论上是可行的,思路如下:
-在初级线圈上并联一个高阻支路,对初级线圈进行采样,同时提供TOFF期。