开关电源-原边反馈技术(绝对实用)
- 格式:pptx
- 大小:210.46 KB
- 文档页数:10
PSR原边反馈开关电源设计之一——变压器设计目前比较流行的低成本、超小占用空间方案设计基本都是采用PSR原边反馈反激式,通过原边反馈稳压省掉电压反馈环路(TL431和光耦)和较低的EMC辐射省掉Y电容,不仅省成本而且省空间,得到很多电源工程师采用。
比较是新技术,目前针对PSR原边反馈开关电源方案设计的相关讯息在行业中欠缺。
下面结合实际来讲讲我对PSR原边反馈开关电源设计的“独特”方法——以实际为基础。
要求条件:全电压输入,输出5V/1A,符合能源之星2之标准,符合IEC60950和EN55022安规及EMC标准。
因充电器为了方便携带,一般都要求小体积,所以针对5W的开关电源充电器一般都采用体积较小的EFD-15和EPC13的变压器,此类变压器按常规计算方式可能会认为CORE太小,做不到,如果现在还有人这样认为,那你就OUT了。
磁芯以确定,下面就分别讲讲采用EFD15和EPC13的变压器设计5V/1A 5W的电源变压器。
1. EFD15变压器设计目前针对小变压器磁芯,特别是小公司基本都无从得知CORE的B/H曲线,因PSR线路对变压器漏感有所要求。
所以从对变压器作最小漏感设计入手:已知输出电流为1A,5W功率较小,所以铜线的电流密度选8A/mm2,次级铜线直径为:SQRT(1/8/3.14)*2=0.4mm。
通过测量或查询BOBBIN资料可以得知,EFD15的BOBBIN的幅宽为9.2mm。
因次级采用三重绝缘线,0.4mm的三重绝缘线实际直径为0.6mm.为了减小漏感把次级线圈设计为1整层,次级杂数为:9.2/0.6mm=15.3Ts,取15Ts.因IC内部一般内置VDS耐压600~650V的MOS,考虑到漏感尖峰,需留50~100V的应力电压余量,所以反射电压需控制在100V以内,得:(Vout+VF)*n<100,即:n<100/(5+1),n<16.6,取n=16.5,得初级匝数NP=15*16.5=247.5取NP=248,代入上式验证,(Vout+VF)*(NP/NS)<100,即(5+1)*(248/15)=99.2<100,成立。
开关电源原边反馈技术
原边反馈(PSR)简介
●在小功率消费类电子应用中,反激式电源是主流,因为反激式电源非常适合小功率段,同时天然提供了隔离的效果。
●隔离后,如果要检测输出的情况,需要用隔离元件,比如光耦等,这样就增加了电源的成本,光耦本身的寿命也会成为电源的瓶颈,基于此,开发出了原边反馈技术。
-原边反馈不从输出直接采样,而是从初级线圈采样,通过初级线圈的情况来计算次级线圈的情况,进一步推算输出的情况。
-部分信息难以从初级线圈直接得到,因此通常还使用一个辅助线圈,辅助线圈和初级线圈共地,和次级隔离
辅助线圈的用途
●增加辅助线圈会增加成本和复杂度,因此,最好能让辅助线圈完成更多的工作,一般辅助线圈都同时做2件事情:
-反映初级线圈和次级线圈的情况,辅助线圈通过电阻分压,将原边和副边的电压情况反映在VSES点,此时辅助线圈和原边/副边构成变压器。
和初级线圈形成一个反激结构,给IC供电,由于反激结构本身无法恒压,因此要加一个限压的二极管。
不使用辅助线圈是否可行
●如果不要求辅助线圈供电,那么是否可以用其他检测方法,比如在初级线圈上检测来做原边反馈?
●理论上是可行的,思路如下:
-在初级线圈上并联一个高阻支路,对初级线圈进行采样,同时提供TOFF期。
最详细的开关电源反馈回路设计开关电源是一种常用的电源供应方式,具有高效率和稳定输出电压的特点。
为了确保开关电源能够稳定工作,需要设计合理的反馈回路。
开关电源的反馈回路是一个闭环控制系统,通过对输出电压进行采样,与参考电压进行比较,计算出误差信号,再经过调整和补偿,使得输出电压稳定在设定值。
首先,需要选择合适的反馈控制策略。
常用的反馈控制策略有电压模式控制(Voltage Mode Control)和电流模式控制(Current Mode Control)。
电流模式控制具有更快的动态响应和更好的稳定性,但需要更复杂的设计和调试,因此在设计中需进行合理选择。
在电压模式控制中,可以使用一个误差放大器进行电压比较,产生误差信号。
误差放大器一般采用差分放大电路,通过输入电压和参考电压的差值乘以一个放大倍数,生成一个调整后的误差信号。
误差放大器的输出信号会经过一个滤波器进行滤波处理,以消除高频噪声。
接下来,需要设计一个比例积分(PI)控制器。
PI控制器可以提供稳定的、无超调的输出响应。
PI控制器的输入是经过滤波器处理后的误差信号,根据误差的大小来调整控制器的输出。
比例增益(Kp)决定了控制器对误差的响应速度,而积分时间常数(Ti)决定了控制器对误差的积分时间,即系统的稳定性。
在设计PI控制器时,可以根据经验公式来选择合适的参数。
通过实际测试和调整,可以优化控制器性能,使得开关电源的输出电压更加稳定。
最后,需要对开关电源进行保护设计。
开关电源反馈回路应具备过压保护、过流保护和短路保护等功能。
过压保护可以避免输出电压过高,过流保护可以防止过大的输出电流,短路保护可以防止输出端短路。
总之,开关电源反馈回路设计需要合理选择控制策略,设计误差放大器和滤波器、PI控制器,并进行参数调整和保护设计。
通过以上步骤,可以设计出稳定可靠的开关电源反馈回路。
电源设计中的原边反馈控制和副边反馈控制方案分析-技术方案一、原边反馈控制、副边反馈控制方案分析PSR(Primary Side Regulator)即原边反馈,用于反激式开关电源中,其利用辅助线圈来提取副边线圈上的输出电压信号。
由于辅助线圈与副边线圈上的电压与匝数比有关,且在副边线圈去磁结束点(即线圈上的电流下降至零时),电源输出电压等于副边线圈上的电压,采样该反馈电压信号,经控制芯片处理得到理想的PWM控制信号,用于控制原边侧功率管的开关,功率管的开关时间决定了变压器上能量储存的多少,从而也直接影响了副边输出电压的大小。
利用这一系列的反馈关系,终可得到稳定的电压输出。
SSR(Secondary Side Regulator)即副边反馈,副边反馈控制技术是发展较早的反激式开关电源控制技术,其对输出电压的提取过程直接在变压器的副边电压输出端完成,因此需要在副边增加光耦、TL431及相关阻容元件,其中TL431为误差放大器,能够实时监测输出电压,并将监测结果以电流的形式通过光耦反馈至原边,同时保证输入端与输出端的隔离。
二、两者的比较如下为思睿达原边反馈控制(PSR)方案和副边反馈控制(SSR)方案。
C6267原边反馈控制方案C5269S副边反馈控制方案三、原边、副边方案如何选?比如在充电器领域,直接对电池充电的应用,一般会对空载电压精度要求高,可以选择副边电源IC+恒流芯片来做。
通过电池管理芯片,对电池充电的。
因为电池管理芯片会有过压和过流保护,可以直接选用原边方案来进行,这样成本相对于副边的方案来说会降低很多。
有时候也可以和客户讨论客户的设计方案来降低成本,引导客户开案。
如在LED灯领域,每串灯珠的前面没有加上一个限流电阻。
那么,在电源线路设计中,用副边方案的IC+高精度恒流方案来做,价格较高;用原边方案,原边的恒流精度在生产中很难达到客户的要求。
但是在每串灯珠的前面加上一个限流电阻,那么就可以直接用原边方案来进行设计,既可达到客户要求,又可以节约成本。
原边控制(Primary Side Control, PSC)开关电源是一种利用变压器原边侧的信息进行反馈控制,以实现恒压(CV)或恒流(CC)输出的开关电源技术。
它的主要特点是不需要在变压器次级进行反馈采样,而是通过对原边电压或电流的检测和控制,间接调整输出电压的稳定。
原边控制开关电源的工作原理:1. 开关动作与电压转换:开关电源的核心部分是开关管,它以高频脉冲形式开关,将输入的交流或直流电压转换为高频脉冲电压。
此脉冲电压通过变压器进行升压或降压变换,然后通过整流和滤波得到所需的直流输出电压。
2. 原边反馈机制:在原边控制开关电源中,通过在变压器原边增设一个反馈网络,该网络通常由电阻、电容以及可能的感应器(如辅助绕组)组成。
原边电压或电流经此反馈网络采样,并将信号传递给控制器(如脉宽调制器PWM)。
3. 控制逻辑与调节:控制器根据反馈信号调节开关管的开关占空比(即开闭时间的比例),从而改变变压器原边的能量传递效率,进而影响次级侧的输出电压或电流。
原边控制技术通常采用算法估算次级侧的输出状态,例如通过监测原边电流峰值或辅助绕组电压,利用匝比换算关系间接得到次级侧的信息。
4. 优点与挑战:原边控制开关电源的优势在于结构简单,减少了次级侧反馈电路的成本和复杂性,尤其适用于小型化和低成本应用。
然而,由于是间接反馈,其控制精度受到变压器参数和负载变化的影响,特别是在负载变动较大时,控制难度增大,因此常需要采用较为复杂的数字控制算法来提高稳压精度和负载调整率。
结构示例:- 在某些原边反馈设计中,会使用辅助绕组来获取原边反馈信号,这个绕组的电压与次级绕组电压有一定比例关系,通过检测和控制这个辅助电压,就可以间接控制次级的输出电压。
- 另外,有些原边反馈开关电源芯片集成了初级峰值电流检测功能,可以根据原边电流的变化情况,调整开关频率和占空比,实现恒流输出或在电压模式下调整占空比实现恒压输出。
总的来说,原边控制开关电源通过巧妙的电路设计和先进的控制策略,实现了对开关电源输出电压的有效控制,广泛应用于各类电子设备和电源系统中。
原边反馈电源方案的设计原边反馈(PSR)的AC/DC控制技术是最近10年间发展起来的新型AC/DC控制技术,与传统的副边反馈的光耦加431的结构相比,其最大的优势在于省去了这两个芯片以及与之配合工作的一组元器件,这样就节省了系统板上的空间,降低了成本并且提高了系统的可靠性。
在手机充电器等成本压力较大的市场,以及LED驱动等对体积要求很高的市场具有广阔的应用前景。
在省去了这些元器件之后,为了实现高精度的恒流/恒压(CC/CV)特性,必然要采用新的技术来监控负载、电源和温度的实时变化以及元器件的同批次容差,这就涉及到初级(原边)调节技术、变压器容差补偿、线缆补偿和EMI优化技术。
初级调节的原理是通过精确采样辅助绕组(NAUX)的电压变化来检测负载变化的信息。
当控制器将MOS管打开时,变压器初级绕组电流ip从0线性上升到ipeak,公式为()。
此时能量存储在初级绕组中,当控制器将MOS管关断后,能量通过变压器传递到次级绕组,并经过整流滤波送到输出端VO。
在此期间,输出电压VO 和二极管的正向电压VF 被反射到辅助绕组NAUX,辅助绕组NAUX 上的电压在去磁开始时刻可由公式表示(),其中VF是输出整流二极管的正向导通压降,在去磁结束时刻可由公式表示,由此可知,在去磁结束时间点,次级绕组输出电压与辅助绕组具有线性关系,只要采样此点的辅助绕组的电压,并形成由精确参考电压箝位的误差放大器的环路反馈,就可以稳定输出电压VO。
这时的输出电流IO由公式表示,其中VCS是CS脚上的电压,其他参数意义如图1所示。
这是恒压(CV)模式的工作原理。
与此同时,原边反馈系统还会面临线缆压降的问题。
因为系统不是直接采样输出端(次级绕组整流后)的电压,而是通过采样辅助绕组的去磁结束点的电压来控制环路反馈的,因此,当输出线较长或者线径较细时,在负载线上会存在较大的内阻(例如在充电器方案中)。
在负载电流变化较大的情况下,输出线的末端电压也会有较大变化。
最详细的开关电源反馈回路设计开关电源反馈回路设计,听起来可能有点高深,但其实里面有很多有趣的东西。
首先,咱们得明白什么是开关电源。
简单来说,它就是把交流电变成直流电的一种设备。
这种设备在我们的日常生活中随处可见,比如手机充电器、电视机,甚至电脑里都有它的身影。
接下来,我们来聊聊反馈回路。
这是开关电源中的关键部分,决定了电源的稳定性和效率。
反馈回路的主要作用是监测输出电压,并把这个信息反馈给控制器。
这样,控制器就能根据反馈信号调整工作状态,确保输出电压保持在设定范围内。
其实,设计一个高效的反馈回路就像调节一个乐器,得找到那个最佳的音调,让整个系统和谐工作。
在设计反馈回路时,有几个重要的参数需要考虑。
首先是增益,这个就是放大输入信号的能力。
增益过大会导致系统不稳定,反而让输出电压波动;增益过小则响应太慢,难以及时调整。
因此,选择合适的增益就像选对了调味料,刚刚好才好。
然后是带宽,这关系到反馈回路对输入信号变化的响应速度。
如果带宽过窄,系统可能无法快速跟上变化,导致输出不稳定。
而带宽过宽,又可能引入不必要的噪声,影响系统的稳定性。
所以,找到一个适中的带宽就显得尤为重要。
除了增益和带宽,延迟也是一个关键因素。
延迟过长会导致反馈信号到达控制器时,电压已经发生了变化,这样就无法及时调整输出,容易引起电压波动。
设计时要尽量缩短延迟,这样系统才能更灵敏地应对变化。
在实际设计中,我们还要考虑噪声的影响。
噪声不仅来源于电源本身,还有外部环境的干扰。
为了降低噪声,设计者可以在电路中添加滤波器。
滤波器就像是个守门员,能有效拦住不必要的信号,让系统更加稳定。
选择合适的滤波器类型和参数,能让整个反馈回路的性能得到提升。
谈到这里,咱们不妨深入一下具体的设计方案。
比如,采用电压反馈和电流反馈相结合的方式。
电压反馈能快速调整输出电压,而电流反馈则能保护电路不受过载影响。
两者结合,既提高了系统的稳定性,又增加了安全性。
这就像是两个人合作,互相补充,能达到更好的效果。