开关电源-原边反馈技术(绝对实用)
- 格式:pptx
- 大小:260.08 KB
- 文档页数:25
PSR原边反馈开关电源设计之一——变压器设计目前比较流行的低成本、超小占用空间方案设计基本都是采用PSR原边反馈反激式,通过原边反馈稳压省掉电压反馈环路(TL431和光耦)和较低的EMC辐射省掉Y电容,不仅省成本而且省空间,得到很多电源工程师采用。
比较是新技术,目前针对PSR原边反馈开关电源方案设计的相关讯息在行业中欠缺。
下面结合实际来讲讲我对PSR原边反馈开关电源设计的“独特”方法——以实际为基础。
要求条件:全电压输入,输出5V/1A,符合能源之星2之标准,符合IEC60950和EN55022安规及EMC标准。
因充电器为了方便携带,一般都要求小体积,所以针对5W的开关电源充电器一般都采用体积较小的EFD-15和EPC13的变压器,此类变压器按常规计算方式可能会认为CORE太小,做不到,如果现在还有人这样认为,那你就OUT了。
磁芯以确定,下面就分别讲讲采用EFD15和EPC13的变压器设计5V/1A 5W的电源变压器。
1. EFD15变压器设计目前针对小变压器磁芯,特别是小公司基本都无从得知CORE的B/H曲线,因PSR线路对变压器漏感有所要求。
所以从对变压器作最小漏感设计入手:已知输出电流为1A,5W功率较小,所以铜线的电流密度选8A/mm2,次级铜线直径为:SQRT(1/8/3.14)*2=0.4mm。
通过测量或查询BOBBIN资料可以得知,EFD15的BOBBIN的幅宽为9.2mm。
因次级采用三重绝缘线,0.4mm的三重绝缘线实际直径为0.6mm.为了减小漏感把次级线圈设计为1整层,次级杂数为:9.2/0.6mm=15.3Ts,取15Ts.因IC内部一般内置VDS耐压600~650V的MOS,考虑到漏感尖峰,需留50~100V的应力电压余量,所以反射电压需控制在100V以内,得:(Vout+VF)*n<100,即:n<100/(5+1),n<16.6,取n=16.5,得初级匝数NP=15*16.5=247.5取NP=248,代入上式验证,(Vout+VF)*(NP/NS)<100,即(5+1)*(248/15)=99.2<100,成立。
开关电源原边反馈技术
原边反馈(PSR)简介
●在小功率消费类电子应用中,反激式电源是主流,因为反激式电源非常适合小功率段,同时天然提供了隔离的效果。
●隔离后,如果要检测输出的情况,需要用隔离元件,比如光耦等,这样就增加了电源的成本,光耦本身的寿命也会成为电源的瓶颈,基于此,开发出了原边反馈技术。
-原边反馈不从输出直接采样,而是从初级线圈采样,通过初级线圈的情况来计算次级线圈的情况,进一步推算输出的情况。
-部分信息难以从初级线圈直接得到,因此通常还使用一个辅助线圈,辅助线圈和初级线圈共地,和次级隔离
辅助线圈的用途
●增加辅助线圈会增加成本和复杂度,因此,最好能让辅助线圈完成更多的工作,一般辅助线圈都同时做2件事情:
-反映初级线圈和次级线圈的情况,辅助线圈通过电阻分压,将原边和副边的电压情况反映在VSES点,此时辅助线圈和原边/副边构成变压器。
和初级线圈形成一个反激结构,给IC供电,由于反激结构本身无法恒压,因此要加一个限压的二极管。
不使用辅助线圈是否可行
●如果不要求辅助线圈供电,那么是否可以用其他检测方法,比如在初级线圈上检测来做原边反馈?
●理论上是可行的,思路如下:
-在初级线圈上并联一个高阻支路,对初级线圈进行采样,同时提供TOFF期。
最详细的开关电源反馈回路设计开关电源是一种常用的电源供应方式,具有高效率和稳定输出电压的特点。
为了确保开关电源能够稳定工作,需要设计合理的反馈回路。
开关电源的反馈回路是一个闭环控制系统,通过对输出电压进行采样,与参考电压进行比较,计算出误差信号,再经过调整和补偿,使得输出电压稳定在设定值。
首先,需要选择合适的反馈控制策略。
常用的反馈控制策略有电压模式控制(Voltage Mode Control)和电流模式控制(Current Mode Control)。
电流模式控制具有更快的动态响应和更好的稳定性,但需要更复杂的设计和调试,因此在设计中需进行合理选择。
在电压模式控制中,可以使用一个误差放大器进行电压比较,产生误差信号。
误差放大器一般采用差分放大电路,通过输入电压和参考电压的差值乘以一个放大倍数,生成一个调整后的误差信号。
误差放大器的输出信号会经过一个滤波器进行滤波处理,以消除高频噪声。
接下来,需要设计一个比例积分(PI)控制器。
PI控制器可以提供稳定的、无超调的输出响应。
PI控制器的输入是经过滤波器处理后的误差信号,根据误差的大小来调整控制器的输出。
比例增益(Kp)决定了控制器对误差的响应速度,而积分时间常数(Ti)决定了控制器对误差的积分时间,即系统的稳定性。
在设计PI控制器时,可以根据经验公式来选择合适的参数。
通过实际测试和调整,可以优化控制器性能,使得开关电源的输出电压更加稳定。
最后,需要对开关电源进行保护设计。
开关电源反馈回路应具备过压保护、过流保护和短路保护等功能。
过压保护可以避免输出电压过高,过流保护可以防止过大的输出电流,短路保护可以防止输出端短路。
总之,开关电源反馈回路设计需要合理选择控制策略,设计误差放大器和滤波器、PI控制器,并进行参数调整和保护设计。
通过以上步骤,可以设计出稳定可靠的开关电源反馈回路。
最详细的开关电源反馈回路设计开关电源反馈回路设计是个挺有意思的话题。
听起来高深,其实很多细节值得我们好好琢磨。
今天我们就从几个方面聊聊,深入浅出,轻松搞定这些概念。
一、反馈回路的基本概念1.1 什么是反馈回路首先,反馈回路就是把输出信号的一部分送回输入。
这么做的目的是调节输出,使其稳定。
想象一下,开关电源就像一个小孩,时不时需要父母的指导。
没有这些反馈,小孩可能就会偏离轨道,输出的电压也可能出现大起大落。
1.2 反馈类型反馈可以分为两种:正反馈和负反馈。
正反馈就像是推波助澜,鼓励小孩继续做某件事情。
而负反馈则是提醒小孩停下来,纠正错误。
大部分情况下,我们更喜欢负反馈,因为它能帮助系统保持稳定。
通过负反馈,输出电压的波动会被抑制,电源的性能也会更可靠。
二、开关电源的基本结构2.1 开关管的作用开关电源的核心是开关管。
它负责控制电流的开关,调节输出电压。
可以把它想象成一个开关,时而打开,时而关闭。
这个过程中,它的工作频率决定了电源的效率。
频率高了,能量损失就小,输出稳定;频率低了,损失就增加,系统也会变得不稳定。
2.2 变压器的功能变压器在这里也占据重要位置。
它的作用是将输入的高压电压转换为适合的低压电压。
变压器就像是一个聪明的调酒师,能将各种成分混合,调配出最合适的“鸡尾酒”。
这里的鸡尾酒就是我们所需的电压。
2.3 整流与滤波整流和滤波是最后一步,确保我们得到的是平滑的直流电。
整流就像是把粗糙的石头打磨成光滑的宝石。
滤波则是去除电流中的杂音,确保输出的电流干净。
这个过程至关重要,稍有不慎,电源的稳定性就会受到影响。
三、反馈回路设计的要点3.1 控制环路设计设计反馈回路时,控制环路的选择非常关键。
控制环路决定了系统的响应速度和稳定性。
要确保环路的增益合适。
增益太高,系统可能会出现震荡;增益太低,系统反应迟缓。
这里的平衡就像走钢丝,得小心翼翼。
3.2 选择合适的传感器在设计反馈回路时,传感器的选择也不能忽视。
原边反馈电源方案的设计原边反馈(PSR 的AC/DC 控制技术是最近10年间发展起来的新型 AC/DC 控制技术,与 传统的副边反馈的光耦加 431的结构相比,其最大的优势在于省去了这两个芯片以及与之配 合工作的一组元器件,这样就节省了系统板上的空间, 降低了成本并且提高了系统的可靠性。
在手机充电器等成本压力较大的市场, 以及LED 驱动等对体积要求很高的市场具有广阔的应 用前景。
在省去了这些元器件之后, 为了实现高精度的恒流/恒压(CC/CV 特性,必然要采用新的技术来监控负载、 电源和温度的实时变化以及元器件的同批次容差,这就涉及到初级(原边)调节技术、变压器容差补偿、线缆补偿和 初级调节的原理是通过精确采样辅助绕组 息。
当控制器将 MOST 打开时,变压器初级绕组电流 。
此时能量存储在初级绕组中,当控制器将MOS 管关断后,能量通过变压器传 递到次级绕组,并经过整流滤波送到输出端 VQ 在此期间,输出电压 VO 和二极管的正向 电压VF 被反射到辅助绕组 NAUX 辅助绕组NAUX 上的电压在去磁开始时刻可由公式I 厂牛川;+K )佻 表示,其中VF 是输出整流二极管的正向导通压降,在去磁结束时刻"" 表示,由此可知,在去磁结束时间点,次级绕组输出电压与辅助绕组具有线性关系, 只要采样此点的辅助绕组的电压,并形成由精确参考电压箝位的误差 放大器的环路反馈,就可以稳定输出电压VQ 这时的输出电流IO 由公式表示,其中 VCS 是 CS 脚上的电压,其他参数意义如图 1所示。
这是恒压(CV 模式的工作原理。
V., 'I I / I',.说T 叽EMI 优化技术。
(NAUX 的电压变化来检测负载变化的信 ip 从C 线性上升到ipeak ,公式为可由公式图1原边控制应用框图及主要节点波形图。
当负载电流超过电流极限时, 负载电流会被箝位在极限电流值, 此时系统就进入恒周期的比例保持一个常数,这样在 CC 模式下的输出电流公式变成了,其中C1是一个小于0.5的常数,VCSLM ■是 CS 引脚限压极限值。
专利名称:原边反馈式反激开关电源电路
专利类型:实用新型专利
发明人:董金亚,张秀红,夏正兰,张昌山,方烈义申请号:CN201120044062.4
申请日:20110217
公开号:CN202004665U
公开日:
20111005
专利内容由知识产权出版社提供
摘要:公开了一种原边反馈式反激开关电源电路,包括交流整流电路、电磁干扰滤波电路、反馈电路、反激开关电路、输出整流滤波电路、及控制电路。
其中,交流整流电路的输入端与交流电源相连接,输出端与电磁干扰滤波电路的输入端相连接;电磁干扰滤波电路的输入端与交流整流电路的输出端相连接,输出端与反激开关电路的输入端和控制电路的输入端相连接;反馈电路的输入端与反激开关电路的输出端相连接,输出端与控制电路的输入端相连接;反激开关电路的输入端与电磁干扰滤波电路的输出端和控制电路的输出端相连接,输出端与反馈电路的输入端、输出整流滤波电路的输入端、以及控制电路的输入端相连接。
申请人:昂宝电子(上海)有限公司
地址:201203 上海市张江高科技园区华佗路168号商业中心3号楼
国籍:CN
代理机构:北京东方亿思知识产权代理有限责任公司
代理人:宋鹤
更多信息请下载全文后查看。
电源设计中的原边反馈控制和副边反馈控制方案分析-技术方案一、原边反馈控制、副边反馈控制方案分析PSR(Primary Side Regulator)即原边反馈,用于反激式开关电源中,其利用辅助线圈来提取副边线圈上的输出电压信号。
由于辅助线圈与副边线圈上的电压与匝数比有关,且在副边线圈去磁结束点(即线圈上的电流下降至零时),电源输出电压等于副边线圈上的电压,采样该反馈电压信号,经控制芯片处理得到理想的PWM控制信号,用于控制原边侧功率管的开关,功率管的开关时间决定了变压器上能量储存的多少,从而也直接影响了副边输出电压的大小。
利用这一系列的反馈关系,终可得到稳定的电压输出。
SSR(Secondary Side Regulator)即副边反馈,副边反馈控制技术是发展较早的反激式开关电源控制技术,其对输出电压的提取过程直接在变压器的副边电压输出端完成,因此需要在副边增加光耦、TL431及相关阻容元件,其中TL431为误差放大器,能够实时监测输出电压,并将监测结果以电流的形式通过光耦反馈至原边,同时保证输入端与输出端的隔离。
二、两者的比较如下为思睿达原边反馈控制(PSR)方案和副边反馈控制(SSR)方案。
C6267原边反馈控制方案C5269S副边反馈控制方案三、原边、副边方案如何选?比如在充电器领域,直接对电池充电的应用,一般会对空载电压精度要求高,可以选择副边电源IC+恒流芯片来做。
通过电池管理芯片,对电池充电的。
因为电池管理芯片会有过压和过流保护,可以直接选用原边方案来进行,这样成本相对于副边的方案来说会降低很多。
有时候也可以和客户讨论客户的设计方案来降低成本,引导客户开案。
如在LED灯领域,每串灯珠的前面没有加上一个限流电阻。
那么,在电源线路设计中,用副边方案的IC+高精度恒流方案来做,价格较高;用原边方案,原边的恒流精度在生产中很难达到客户的要求。
但是在每串灯珠的前面加上一个限流电阻,那么就可以直接用原边方案来进行设计,既可达到客户要求,又可以节约成本。
原边控制(Primary Side Control, PSC)开关电源是一种利用变压器原边侧的信息进行反馈控制,以实现恒压(CV)或恒流(CC)输出的开关电源技术。
它的主要特点是不需要在变压器次级进行反馈采样,而是通过对原边电压或电流的检测和控制,间接调整输出电压的稳定。
原边控制开关电源的工作原理:1. 开关动作与电压转换:开关电源的核心部分是开关管,它以高频脉冲形式开关,将输入的交流或直流电压转换为高频脉冲电压。
此脉冲电压通过变压器进行升压或降压变换,然后通过整流和滤波得到所需的直流输出电压。
2. 原边反馈机制:在原边控制开关电源中,通过在变压器原边增设一个反馈网络,该网络通常由电阻、电容以及可能的感应器(如辅助绕组)组成。
原边电压或电流经此反馈网络采样,并将信号传递给控制器(如脉宽调制器PWM)。
3. 控制逻辑与调节:控制器根据反馈信号调节开关管的开关占空比(即开闭时间的比例),从而改变变压器原边的能量传递效率,进而影响次级侧的输出电压或电流。
原边控制技术通常采用算法估算次级侧的输出状态,例如通过监测原边电流峰值或辅助绕组电压,利用匝比换算关系间接得到次级侧的信息。
4. 优点与挑战:原边控制开关电源的优势在于结构简单,减少了次级侧反馈电路的成本和复杂性,尤其适用于小型化和低成本应用。
然而,由于是间接反馈,其控制精度受到变压器参数和负载变化的影响,特别是在负载变动较大时,控制难度增大,因此常需要采用较为复杂的数字控制算法来提高稳压精度和负载调整率。
结构示例:- 在某些原边反馈设计中,会使用辅助绕组来获取原边反馈信号,这个绕组的电压与次级绕组电压有一定比例关系,通过检测和控制这个辅助电压,就可以间接控制次级的输出电压。
- 另外,有些原边反馈开关电源芯片集成了初级峰值电流检测功能,可以根据原边电流的变化情况,调整开关频率和占空比,实现恒流输出或在电压模式下调整占空比实现恒压输出。
总的来说,原边控制开关电源通过巧妙的电路设计和先进的控制策略,实现了对开关电源输出电压的有效控制,广泛应用于各类电子设备和电源系统中。
再分享一款原边反馈方案的25W开关电源适配器本方案是为客户设计的31V25W的案子,这个电压对于大多数朋友来说没什么用,大家可以改一下变压器的参数和部分电容电阻的参数来改成自己需要的电压电流。
本案例采用的是PSR原边反馈外推MOSFET的方案,满足6级能耗的要求,电路看起来更加简洁,更适合初学者来DIY。
还是老规矩,先看看电路原理图,看看是不是元器件更少了,原理图一目了然。
电路原理图输入交流电源经保险丝通过共模电感后进入到桥式整流器变成脉动直流,然后经C1、L1、C2组成的π型滤波器滤波平滑。
通过电阻R1、R2给芯片提供启动电压,变压器启动绕组产生的电压经电阻R6、整流管D1以及电容C3给芯片提供一个持续的工作电压。
电阻R7、R8、R9为分压电阻,给芯片的FB一个电压来确定输出电压的高低。
电阻RS用来调整输出电流的大小。
CX1、LF1、LF2都为抑制电磁骚扰的器件,保证产品能通过电磁辐射、传导的测试。
电阻R3、R4、R5、C6、D2组成RCD电路来吸收变压器开关时产生的高压尖峰电压,保证MOS的正常工作。
PCBlayout由于时间仓促,电路原理图的元件标号有的可能未能与PCB一致,请对照原理走线查看。
最后,附上材料清单供参考。
品名规格单只用量单位位号备注贴片电阻 1.5MΩ±5% 1206 2 只R1,R2330KΩ±5% 1206 2 只R3,R4 0.4Ω±1% 1206 1 只R515KΩ±1% 0805 1 只R72.4KΩ±1% 0805 1 只R830KΩ±1% 1206 1 只R920KΩ±5% 0805 1 只R1047Ω±5% 1206 1 只R111MΩ±5% 1206 2 只RX1,RX2贴片电容10uF /50V±10% 12061 只C3 470PF/200V 1206 1 只C7桥堆ABS10 1 只BD1 贴片二极管A7 SOD-123FL 1 只D1 M7 SMA 1 只D2二极管SR5200 DO-201AD 1 只D3 MOS 7N65 TO-220F 1 只Q1 芯片U6117 1 只U1电解电容15uf/400V 8*17 2 只C1,C2220Uf/35V 8*14 LOW ESR 2 只C4,C5涤纶电容2J222J 1 只C6 X电容0.22uF/275V P=10 1 只CX1 Y1电容222/400V P=10mm 1 只CY1 保险丝电阻2Ω 1W小型化 1 只F1共模电感10mH 线径0.25mmUU9.81 只LF1200uH 12*6*4 绿环 0.5线8圈1 只LF2PCB版25W 1 只插片AC插片 2 只LN输出输出插片 2 只输出盖板65mm外壳配套盖板 2 只(+ -) 外壳GS 电子防水加长 65 1 只标签 1 只变压器RM8-31025 1 只。