1.3.1--全称量词和全称命题--3.2存在量词和特称命题--课件-(北师大选修1-1)
- 格式:ppt
- 大小:2.73 MB
- 文档页数:24
1.3.1-1.3.2 全称量词与全称命题 存在量词与特称命题[A.基础达标]1.下列命题中,真命题是( )A .存在m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .存在m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .对任意m ∈R ,函数f (x )=x 2+mx (x ∈R )都是偶函数D .对任意m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:选A.由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“存在m ∈R ,使函数f (x )=x 2+mx (x ∈R )为偶函数”是真命题.2.以下四个命题既是特称命题又是真命题的是( )A .锐角三角形的内角是锐角或钝角B .至少有一个实数x ,使x 2≤0C .两个无理数的和必是无理数D .存在一个负数x ,使1x >2 解析:选B.A ,C 为全称命题;对于B ,当x =0时,x 2=0≤0,正确;对于D ,显然错误.3.下列命题中是全称命题并且是真命题的是( )A .每一个二次函数的图像都开口向上B .存在一条直线与两个相交平面都垂直C .存在一个实数x ,使x 2-3x +6<0D .对任意c ≤0,若a ≤b +c ,则a ≤b解析:选D.对A 当二次项系数小于零时不成立,A 为假命题;B 、C 均为特称命题.故选D.4.下列命题是假命题的为( )A .存在x ∈R ,lg e x =0B .存在x ∈R ,tan x =xC .任意x ∈(0,π2),1tan x>cos x D .任意x ∈R ,e x >x +1解析:选D.对A ,x =0时成立,为真命题;对B ,当x =0时成立,为真命题;对C ,因为x ∈(0,π2),cos x >0,0<sin x <1,所以1tan x =cos x sin x>cos x ,为真命题,故选D.5.已知正四面体A BCD 的棱长为2,点E 是AD 的中点,则下面四个命题中正确的是( )A .对任意的F ∈BC ,EF ⊥ADB .存在F ∈BC ,EF ⊥ACC .对任意的F ∈BC ,EF ≥ 3D .存在F ∈BC ,EF ∥AC解析:选A.因为△ABD 为等边三角形,E 为AD 中点,⎭⎪⎬⎪⎫所以BE ⊥AD 同理CE ⊥AD BE ∩CE =E ⇒AD ⊥平面BCE , 故AD ⊥EF . 6.“对于任意的x ∈Z ,2x +1是整数”的逆命题是________. 答案:若2x +1是整数,则x ∈Z7.若对任意的x ∈R ,f (x )=(a 2-1)x 是减函数,则a 的取值范围是________.解析:依题意有:0<a 2-1<1⇔⎩⎪⎨⎪⎧a 2-1>0,a 2-1<1⇔⎩⎨⎧a <-1或a >1,-2<a <2⇔-2<a <-1或1<a < 2. 答案:(-2,-1)∪(1,2)8.若对任意x ∈R ,都有ax 2+2x +a <0,则实数a 的取值范围是________.解析:命题为真命题时,有⎩⎪⎨⎪⎧a <0,Δ=4-4a 2<0.解得a <-1.即a 的取值范围是(-∞,-1).答案:(-∞,-1)9.判断下列命题是全称命题还是特称命题,并判断真假.(1)任意x ∈(-1,2),x 2-x <2;(2)存在x ∈{x |x >1},log 2x +log x 2<2;(3)指数函数都是单调函数;(4)至少有一个整数,它既能被2整除,又能被5整除.解:(1)全称命题.由于x 2-x <2⇔x 2-x -2<0⇔-1<x <2,所以任意x ∈(-1,2),x 2-x <2成立.真命题.(2)特称命题.当x ∈{x |x >1}时,log 2x >0,故log 2x +log x 2=log 2x +1log 2x≥2,当且仅当x =2时,(log 2x +log x 2)min =2,所以不存在x ∈{x |x >1},使log 2x +log x 2<2成立.假命题.(3)全称命题.当a >1时,指数函数f (x )=a x 为增函数,当0<a <1时,指数函数f (x )=a x 为减函数,所以指数函数都是单调函数.真命题.(4)特称命题.例如,10既能被2整除,又能被5整除,真命题.10.不等式x 2-2mx -1>0对一切1≤x ≤3都成立,求m 的取值范围.解:法一:因为Δ=4m 2+4>0恒成立,所以设方程x 2-2mx -1=0的两根为x 1,x 2,且x 1<x 2 .因为{x |1≤x ≤3}⊆{x |x 2-2mx -1>0}={x |x >x 2或x <x 1},所以方程x 2-2mx -1=0的两根x 1,x 2都大于3或都小于1.因为x 1x 2=-1<0,所以两根都小于1.令y =x 2-2mx -1,则⎩⎪⎨⎪⎧m <1,f (1)>0, 解得m <0.所以m 的取值范围为{m |m <0}.法二:因为1≤x ≤3,x 2-2mx -1>0,所以m <x 2-12x =12⎝⎛⎭⎪⎫x -1x . 当x ∈[1,3]时,函数y =x -1x是增加的, 所以12⎝ ⎛⎭⎪⎫x -1x ∈⎣⎢⎡⎦⎥⎤0,43,所以m <0. [B.能力提升]1.已知a >0,函数f (x )=ax 2+bx +c .若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .存在x ∈R ,使f (x )≤f (x 0)B .存在x ∈R ,使f (x )≥f (x 0)C .对任意x ∈R ,使f (x )≤f (x 0)D .对任意x ∈R ,使f (x )≥f (x 0) 解析:选C.由x 0=-b2a(a >0)及抛物线的相关性质可得选项C 是错误的.2.有四个关于三角函数的命题:p 1:存在x ∈R ,sin 2x 2+cos 2x 2=12; p 2:存在x ,y ∈R ,sin(x -y )=sin x -sin y ;p 3:对任意的x ∈[0,π], 1-cos 2x 2=sin x ; p 4:sin x =cos y ⇒x +y =π2. 其中假命题为( )A .p 1,p 4B .p 2,p 4C .p 1,p 3D .p 3,p 4解析:选A.由于对任意x ∈R ,sin 2x 2+cos 2x2=1,故p 1是假命题; 当x ,y ,x -y 有一个为2k π(k ∈Z )时,sin x -sin y =sin(x -y )成立,故p 2是真命题.对于p 3:任意x ∈[0,π],1-cos 2x 2=2sin 2x 2=|sin x |=sin x 为真命题. 对于p 4:sin x =cos y ⇒x +y =π2为假命题,例如x =π,y =π2,满足sin x =cos y =0,而x +y =3π2. 3.命题“对任意x ∈R ,存在m ∈Z ,使m 2-m <x 2+x +1”是________命题.(填“真”或“假”)解析:由于对任意x ∈R ,x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34≥34,所以只需m 2-m <34,即-12<m <32.所以当m =0或m =1时,对任意x ∈R ,m 2-m <x 2+x +1成立,因此该命题是真命题.答案:真4.已知定义在(-∞,3]上的减函数f (x ),使f (a 2-sin x )≤f (a +1+cos 2x )对于任意x ∈R 恒成立,则a 的取值范围是________.解析:由函数单调性得3≥a 2-sin x ≥a +1+cos 2x 对任意x ∈R 均成立,即⎩⎪⎨⎪⎧a 2≤3+sin x ,a 2-a ≥sin x +cos 2x +1对任意x ∈R 均成立, 则⎩⎪⎨⎪⎧a 2≤(3+sin x )min ,a 2-a ≥(sin x +cos 2x +1)max ,即⎩⎪⎨⎪⎧a 2≤2,a 2-a ≥94. 解得-2≤a ≤12-102. 答案:⎣⎢⎡⎦⎥⎤-2,12-102 5.若不等式t 2-2at +1≥sin x 对一切x ∈[-π,π]及a ∈[-1,1]都成立,求t 的取值范围.解:因为x ∈[-π,π],所以sin x ∈[-1,1],于是由题意可得对一切a ∈[-1,1]不等式t 2-2at +1≥1恒成立.由t 2-2at +1≥1得2t ·a -t 2≤0.令f (a )=2t ·a -t 2,则f (a )在t ≠0时是关于a 的一次函数,当t =0时,显然f (a )≤0成立,当t ≠0时,要使f (a )≤0在a ∈[-1,1]上恒成立,则⎩⎪⎨⎪⎧f (1)=2t -t 2≤0,f (-1)=-2t -t 2≤0, 即⎩⎪⎨⎪⎧t 2-2t ≥0,t 2+2t ≥0,解得t ≤-2或t ≥2. 故t 的取值范围是t ≤-2或t =0或t ≥2.6.(选做题)若x ∈[-2,2],不等式x 2+ax +3≥a 恒成立,求a 的取值范围.解:设f (x )=x 2+ax +3-a ,则问题转化为当x ∈[-2,2]时,[f (x )]min ≥0即可.①当-a 2<-2,即a >4时,f (x )在[-2,2]上是增加的,[f (x )]min =f (-2)=7-3a ≥0,解得a ≤73,又a >4,所以a 不存在. ②当-2≤-a 2≤2,即-4≤a ≤4时, [f (x )]min =f ⎝ ⎛⎭⎪⎫-a 2=12-4a -a 24≥0, 解得-6≤a ≤2.又-4≤a ≤4,所以-4≤a ≤2.③当-a 2>2,即a <-4时,f (x )在[-2,2]上是减少的,[f (x )]min =f (2)=7+a ≥0,解得a ≥-7,又a <-4,所以-7≤a <-4.故a 的取值范围是{a |-7≤a ≤2}.。