2023中考九年级数学分类讲解 - 第八讲 三角形、全等三角形、等腰三角形(含答案)(全国通用版)
- 格式:doc
- 大小:900.23 KB
- 文档页数:11
考点12等腰三角形【命题趋势】等腰三角形的性质及判定是初中数学最为重要的知识点之一,也是重要几何模型的“发源地”,最为经典的“手拉手”模型就是以等腰三角形为特征总结的。
在浙江中考中,等腰三角形可以以选择题、填空题出现,来考察其性质;也可以以解答题出题,来考察其性质和判定的综合(此时多为压轴题)。
所占分值也是比较多,属于是中考必考的中等偏上难度的考点。
【中考考查重点】一、等腰三角形的性质和判定二、角平分线的性质与判定三、线段垂直平分线的性质与判定考向一:等腰三角形的性质和判定一.等腰三角形的性质和判定二.等边三角形的性质和判定定义三边长都相等的三角形是等边三角形性质轴对称性:等边三角形是轴对称图形,有3条对称轴等边三角形三个角都相等,分别都等于60°三线合一(等边三角形三边上均存在三线合一)。
判定定义法有两个角相等的等腰三角形是等边三角形有两个角等于60°的三角形是等边三角形【方法提炼】【同步练习】1.在△ABC中,AB=AC,D是BC中点,∠BAD=35°,则∠B的度数为()A.35°B.45°C.55°D.60°2.等腰三角形的一边等于5,一边等于11,则此三角形的周长为()A.10B.21C.27D.21或273.在直角坐标系中,已知点A(﹣1,1),在y轴负半轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的坐标为()A.(﹣1,0)B.(﹣,0)C.(0,1)D.(0,﹣)4.已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN =9,则线段MN的长()A.大于9B.等于9C.小于9D.不能确定6.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=m,则△MGQ周长是()A.8+2m B.8+m C.6+2m D.6+m7.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN =BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个8.一个等腰三角形一腰上的高与另一腰夹角为50°,则顶角的度数为.9.如图,在正方形网格中,网格线的交点称为格点;已知A,B是两格点,若C点也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.10.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交直角两边于A,B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则△AOC的形状为.11.“中国海监50”在南海海域B处巡逻,观测到灯塔A在其北偏东80°的方向上,现该船以每小时10海里的速度沿南偏东40°的方向航行2小时后到达C处,此时测得灯塔A在其北偏东20°的方向上,求货轮到达C处时与灯塔A的距离AC.12.已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.13.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.☆其中:1.平行线的引入方法常见的有:①直接给出的平行;②平行四边形及特殊平行四边形;③梯形的上下底边;④辅助线作出的平行;⑤其他条件证明得到的平行;2.当等腰△是结论时,常接着用等腰△的性质;1.“知2得1”在圆中应用时,常用“角平分线+等腰→∥”,进而得某角=Rt∠,证直线与圆相切。
2023年中考数学专题复习——三角形(一)自我评估(时间:分钟满分:100分)(班级:姓名:得分:)一、选择题(每小题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是()A. 6 cm,8 cm,15 cmB. 7 cm,5 cm,12 cmC. 4 cm,6 cm,5 cmD. 8 cm,4 cm,3 cm2. 如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E.若∠A=20°,则∠CEF等于()A. 110°B. 100°C. 80°D. 70°第2题图第3题图第4题图第5题图3. 将一副三角尺按如图方式重叠,则∠1的度数为()A. 45°B. 60°C. 75°D. 105°4. 如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A. AB=BCB. EC=BFC. ∠A=∠DD. AB=CD5. 如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D,AE∥BD,交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°6. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD,交AB于点E,则下列结论一定成立的是()A. BC=ECB. BC=BEC. EC=BED. AE=EC第6题图第7题图第8题图第9题图7. 如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A. 30°B. 36°C. 40°D. 45°8. 如图,在边长为12的等边三角形ABC中,D为边BC上一点,且BD=12CD,过点D作DE⊥AB于点E,F为边AC上一点,连接EF,DF,M,N分别为EF,DF的中点,连接MN,则MN的长为()A. 3B. 2C. 23D. 49. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上10. 如图,等边三角形A1C1C2的周长为1,作C1D1⊥A1C2于点D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边三角形A2C2C3;作C2D2⊥A2C3于点D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边三角形A3C3C4……且点A1,A2,A3,…,A n都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1(n≥2,且n为整数)的周长和为()A.11212nn---B.212nn-C.1212nn--D.1212nn+-第10题图二、填空题(每小题4分,共24分)11. 如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.第11题图第12题图第13题图第14题图12. 如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是.13. 如图所示是由6个边长相等的正方形组合成的图形,∠1+∠2+∠3= °.14. 如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE.若∠EDM=84°,则∠A= °.15. 在探索数学名题“尺规三等分角”的过程中,有下列问题:如图,BD是ABCD的对角线,点E在BD 上,DC=DE=AE,∠1=25°,则∠C的大小是.第15题图第16题图16. 如图,在△ABC中,AD平分∠BAC,且AD=AC,E是AD延长线上一点,且AE=AB,过点E作EF ⊥AB于点F,则以下结论:①BD=EC;②∠ACE+∠BED=180°;③EC∥AB,④2AF=AC+AB;⑤△BEC 为等腰三角形.其中正确的有.(填序号)三、解答题(共46分)17.(8分)如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.第17题图18.(12分)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.第18题图19. (12分)图中是一副三角尺,含45°角的三角尺Rt△DEF的直角顶点D恰好在含30°角的三角尺Rt△ABC 斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于点M.(1)如图①,当DF经过点C时,作CN⊥AB于点N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于点H,作HN⊥AB于点N,(1)的结论仍然成立,请你说明理由.①②第19题图20.(14分)(1)已知,△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°,如图①所示,求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变,如图②所示,(1)中的结论是否成立,并说明理由.①②第20题图三角形(一)自我评估一、1. C 2. A 3. C 4. D 5. A 6. B 7. B 8. A 9. D 10. C二、11. ∠A=∠D 12. 1 13. 135 14. 21 15. 105°16. ①②④⑤三、17. 证明:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD. 又AB=AE,∠B=∠E,所以△ABC≌△AED.所以BC=ED.18.(1)解:因为AB=AC,所以∠B=∠C=42°.因为AD⊥BC,所以∠ADB=90°.所以∠BAD=90°-∠B=90°-42°=48°.(2)证明:因为AB=AC,AD⊥BC,所以∠BAD=∠CAD.因为EF∥AC,所以∠F=∠CAD.所以∠BAD=∠F.所以AE=FE.19.(1)证明:因为∠ACB=90°,D是AB的中点,所以CD=AD=BD.因为∠B=90°-∠A=60°,所以△BCD是等边三角形.因为CN⊥DB,所以DN=12 DB.因为∠EDF=90°,△BCD是等边三角形,所以∠ADG=30°.因为∠A=30°,所以GA=GD.因为GM⊥AB,所以AM=12AD.所以AM=DN.(2)解:因为DF∥AC,所以∠FDB=∠A=30°,∠AGD=∠GDH=90°.所以∠ADG=60°.因为∠B=60°,AD=DB,所以△ADG≌△DBH.所以AG=DH.因为GM⊥AB,HN⊥AB,所以∠GMA=∠HND=90°.因为∠A=∠FDB,所以△AMG≌△DNH.所以AM=DN.20.(1)证明:如图①,过点D作DF∥BC,交AC于点F.因为△ABC是等腰三角形,∠A=60°,所以△ABC是等边三角形.所以∠ABC=60°.因为DF∥BC,所以∠ADF=∠ABC=60°,∠FDC=∠DCE.所以△ADF是等边三角形.所以AD=DF,∠AFD=60°.所以∠DFC=180°-60°=120°.因为∠EBD=180°-60°=120°,所以∠DFC=∠EBD.因为∠DCE=∠DEC,所以∠FDC=∠DEC,ED=CD.所以△DBE≌△CFD.所以EB=DF.所以EB=AD.①②第20题图(2)解:EB=AD成立.理由如下:如图②,过点D作DF∥BC,交AC的延长线于点F.同(1)可证△A D F是等边三角形.所以AD=DF,∠A FD=60°.因为∠DBE=∠A BC=60°,所以∠DBE=∠A FD.因为∠FD C=∠DCE,∠DCE=∠DEC,所以∠F DC=∠DEC,ED=CD.所以△DBE≌△CFD.所以EB=DF.所以EB=AD.。
初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。
一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。
两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。
2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。
2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。
三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。
(2)一边的中线等于这条边的一半,这个三角形是直角三角形。
(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。
2021年九年级数学上学期等腰三角形 直角三角形一、同步辅导:等腰三角形、直角三角形1、等腰三角形是一种特殊的三角形,等边三角形又是特殊的等腰三角形.它们除其有一般三角形的边、内角、外角的性质之外,还有许多特殊性.2、等腰三角形和等边三角形的性质和判定。
性质 判 定等腰三角形1.由定义可得:等腰三角形两个腰相等。
2.定理:等腰三角形的两个底角相等。
(同一三角形中,等边对等角)3.定理推论:等腰三角形的顶角平分线,底边上的中线,底边上的高线互相重合。
4.对称性,等腰三角形是轴对称图形,有一条对称轴。
(底边的中垂线)1.用定义:有两条边相等的三角形是等腰三角形。
2.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
即同一三角形中,等角对等边。
等边三角形 1.由定义可得:三边相等。
2.定理推论,等边三角形的各角都相等且每个角都等于60°。
3.对称性:等边三角形是轴对称图形,有三条对称轴,即三条边的垂直平分线。
4.具有等腰三角形的所有性质。
1.由定义:三边都相等的三角形是等边三角形。
2.定理推论:三个角都相等的三角形是等边三角形。
3.定理推论:有一个角等于60°的等腰三角形是等边三角形。
直角三角形 1.直角三角形中两个锐角互余。
2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
3.勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即a 2+b 2=c 2 4.直角三角形全等的判定方法除了常用的以外,还有HL. 1.由定义:有一个角为直角的三角形叫做直角三角形。
2.勾股定理逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2那么这个三角形是直角三角形。
二、例题精讲:说明:等腰三角形具有两条腰相等以及两个底角相等的性质,这些性质不仅可以用于证明,而且也常常用于计算线段或角的大小.例1.等腰三角形顶角的外角与一个底角的外角和等于245°,求它的顶角的度数. 分析: 这是关于等腰三角形角的计算.可考虑应用设未知数列方程的方法计算.解: (一)设这个等腰三角形的顶角为x°,根据"同一三角形中等边对等角",则它的一个底角为,这个顶角的外角为,底角的外角为[180-.由题意可得: (180-x)+[180-(180-x)]=245 ∴180-x+180-90+x=245∴-x=245-270∴x=50答:这个三角形顶角为50°.解: (二)设顶角为x°,底角为y°,顶角外角为(180-x)°,底角外角为(180-y)°. 由三角形内角和定理可得:x+2y=180由题意可得: (180-x)+(180-y)=245, ∴x+y=115,∴ 解方程组得答:这个三角形顶角为50°.例2.等腰三角形中的一个内角为50°,求另外两个角的度数.分析:等腰三角形的顶角可以是锐角,也可以是直角或钝角,等腰三角形的底角必为锐角.因此这个50°的角既可以是顶角又可以是底角,所以要分类进行讨论. 解:若顶角为50°时,由等腰三角形的两个底角相等和三角形内角和定理可得一底角为:=65°.∴三角形另外两个角都为65°, 若底角为50°,则另一底角也为50°,由内角和又可求另一角为180°-(2×50°)=80°。
第三节等腰、等边及直角三角形知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。
2)、“角平分线+垂线”构造等腰三角形。
3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。
2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C ) A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=6. 知识点三:直角三角形的判定与性质 1.直角三角形的性质 (1)两锐角互余.即∠A +∠B =90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B =30°则AC =12AB ; (3)斜边上的中线长等于斜边长的一半.即若CD 是中线,则CD =12AB.(4)勾股定理:两直角边a 、b 的平方和等于斜边c 的平方.即 a 2+b 2=c 2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C =90°,则△ABC 是Rt △;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD =BD =CD ,则△ ABC 是Rt △(3) 勾股定理的逆定理:若a 2+b 2 =c 2, 则△ABC 是Rt △.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。
2023山西省中考数学考点解析数学起源于人类早期的生产活动,并能应用实际问题。
他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
今天小编在这给大家整理了一些山西省中考数学考点解析,我们一起来看看吧!山西省中考数学考点解析点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称直角三角形定理定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形中考数学考点解析【有理数】①整数→正整数/0/负整数②分数→正分数/负分数【数轴】①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
《三角形》经典考点专题点评三角形在平面图形中是最简单也是最基本的图形,一切多边形都可以分成若干个三角形,三角形在我们生活中无处不在.从本专题开始,中学对几何的学习就正式开始了.7年级对三角形的学习主要包含等腰(边)三角形与三角形的全等.当然,我们也引入了一些直角三角形的知识点作为扩展内容.三角形的学习除了最基础的点(特殊点)、线(角度)、面(面积)以外,还要学习图形的平移、旋转和翻折,当然也需要掌握一些图形的构建方法.因此,学习好三角形能大幅提高我们对于基本图形的判断、复杂图形的分解与转化能力,以及辅助线的添加意识.本专题的编排顺序是由二次全等、中线倍长的证明引出,接着通过截长补短以及平移、旋转和翻折等其他常用方法和技巧来加深学生对三角形学习的理解.经典拉分题思维点评题1如图7-1所示,已知∠A=90°,AB=AC,M是AC的中点,A党⊥BM交BC于点党,交BM于点E.求证:∠AMB=∠党MC.满分证明(1)如图7-2所示,作∠BAC的平分线AG交BM于点G.(2)由条件AB=AC、∠BAG=∠AC党=45°、∠ABG=∠CA党,可证得△BGA≌△A党C,从而得到AG=C党.(3)由条件AG=C党、AM=CM,∠MAG=∠MC党=45°,可证得△AMG≌△CM 党.(4)因此∠AMB=∠党MC.技巧贴士本题要求证的是两个角相等,一般采用证明两角所在的两个三角形全等的方法.从图中观察到∠AMB与∠党MC所在的两个三角形△AME与△CM党显然不全等,但是这两个三角形中有其他相等元素:AM—CM.结合本条件,加上结论,全等三角形条件有两个,因此我们想到通过添加辅助线,构造两个全等三角形△AMG、△CM党,从而得到∠AMB =∠党MC.题2如图7-3所示,已知在△ABC中,AB=AC,延长AB至党使B党=AB,E为AB 中点.求证:C党=2EC.满分证明(1)如图7-4所示,延长CE至F使CE=EF,再连接BF.(2)易证△ACE≌△BFE,从而可得AC=BF、∠CAE=∠FBE.(3)由∠CB党=∠CAE+∠ACB、∠CBF=∠FBE+∠ABC,可得∠CB党=∠CBF.(4)由条件B党=AB=AC=BF,BC=BC,易证△CBF≌△CB党.(5)因此C党=CF=2EC.技巧贴士本题还可用三角形中位线定理解答(三角形中位线是指连接三角形两边中点的线段,即三角形的中位线平行于第三边并且等于它的一半).取AC的中点G,连接EG、BG,由AB=AC,E、G分别为AB、AC中点,得出BE=CG,从而△BEC≌△CGB.故CE=BG.由中位线定理可知BG=12C党,所以CE=12C党.题3如图7-5所示,已知在△ABC外作正方形AB党E和ACGF,M是BC的中点.求证:AM=12 EF.满分解答(1)如图7-6所示,延长AM至N,使MN=AM,连接BN.(2)易证△ACM≌△NBM,从而可得∠ACB=∠NBC.(3)由∠ABC+∠ACB+∠BAC=180°,可得∠ABC+∠NBC+∠BAC=180°,即∠ABN+∠BAC=180°.(4)再由∠EAF+∠EAB+∠BAC+∠CAF=360°,得到∠EAF+∠BAC=180°,即∠ABN=∠EAF.(5)结合条件EA=AB,BN=CA=AF,易证△ABN≌△EAF.(6)因此EF=AN=2AM,即AM=12 EF.技巧贴士已知条件中出现了中点以及AM=12EF形式,这暗示了可使用“中线倍长”的方法.通过将中线AM延长一倍后,证明AN=EF,找到AN、EF所在的△ABN、△EAF,证明两个三角形全等即可.思维点评二次全等,就是通过两次三角形全等,解决题目中涉及的角度、线段间的关系.7年级学习了全等三角形,自然全等三角形是一种手段与工具.它能用于证明角、边的等量关系,因此证明边、角相等,往往就是证明边、角所在三角形全等.所以,对于角、边的关系,一定要将其置于某个载体,如两个全等三角形中,此外,解决二次全等往往使用逆推的思路,在题1贴士中所构造的△AMG≌△CM党所缺少的条件是AG=C党,通过△BGA≌△A党C来提供.中线倍长,是初中数学几何中常见的一种添加辅助线的方法.若题目出现中点、中线,要求证或出现“A=2B”,一般延长一倍的中线.如图7-7所示,通过△ACM≌△BNM,从而实现“A=2B”.题4如图7-8所示,在△ABC中,AB=AC,B党为边AC上的高,P为线段BC边上的动点(且不与B、C两点重合),过P点分别作AB、AC边上的垂线且与AB、AC分别交于M、N两点,求证:B党=PM+PN.满分证明(1)如图7-9所示,在NP的延长线上截取PE=PM,连接BE.(2)由条件PE=PM、∠MPB=∠EPB(在.Rt△BMP与Rt△PNC中,由于∠MBP=∠C,因此∠MPB=∠NPC.又∠BPE与∠NPC为对顶角,因此∠MPB=∠EPB),BP=BP,易证△BPM≌△BPE,从而可得∠BEP=90°.(3)因此四边形BEN党为矩形,可得EN=B党.(4)由EN=EP+PN得B党=PM+PN.技巧贴士本题是运用“补短法”,把所要求的B党=PM+PN中的PM“补”到PN所在的直线上,接着,只需证明四边形BEN党为矩形,结合已有的两个直角,只需证明一个∠BEP =90°,从而便有证明△BPM≌△BPE(本分析思路仍为逆向思维,可见在证明几何问题中,逆向思维出现较多).当然,本题还可用“截长法”(详见本专题[思维点评])和“面积法”来做,“面积法”思路如下:连接AP,由于△ABC为等腰三角形,再运用S△ABC=S△ABP +S△APC,即可得证.题5如图7-10所示,在等腰△ABC中,AB=AC,顶角∠A=100°,∠B的平分线BE 交AC于E,求证:BC=AE+EB.满分证明(1)如图7-11所示,在BC上取B党=BE,BF=AB.(2)由条件AB=BF、BE=BE、∠ABE=∠EBC=20°,易证△ABE≌△FBE.(3)因此∠BFE=100°'故∠BEF=60°,∠EF党=80°.(4)又由于B党=BE,可得∠BE党=∠B党E=80°,∠FE党=∠BE党-∠BEF=20°,故∠EF党=∠E党F,EF=E党.(5)由于∠党EC=180°-∠BEA-∠BE党=40°=∠C,所以E党=C党,即C党=EF=AE.(6)由BC=B党+C党,B党=EB,得BC=AE+EB.技巧贴士本题运用“截长法”,把最长的BC截取题中所要求的其中一段,如B党=BE.至于BF=AB的出现则在于从∠B的角平分线得到启示,看到角平分线,往往意味着三角形翻折,△ABF≌△FBE也可认为两三角形翻折(相等会为全等提供可能性),并且出现等腰三角形往往还意味着存在等量代换.题6如图7-12所示,在正方形ABC党中,点E在党C的延长线上,点F在CB的延长线上,∠EAF=45°,求证:党E-BF=EF.满分证明(1)如图7-13所示,在党C上截取党G,使得党G=BF,连接AG.(2)由四边形ABC党是正方形,可得∠A党G=∠ABF=90°,A党=AB.(3)又由于党G=BF,可得△A党G≌△ABF,故∠GA党=∠FAB,AG=AF.(4)∠党AB=90°=∠党AG+∠GAB=∠BAF+∠GAB=∠GAF,即∠GAE=∠GAF-∠EAF=45°,∠GAE=∠FAE=45°.(5)又因为AG=AF、AE=AE,故△EAG≌△EAF,即得EF=EG=E党-G党=党E -BF.技巧贴士本题运用“截长法”,在党C上截取党G=BF,可得△A党G≌△ABF.而在有正方形的题目中看到∠EAF,即使∠EAF≠45°,也要反应出存在一对含该角度∠EAF的全等三角形,即题中的△EAG≌△EAF.思维点评一般问题中出现“A=B+C”,且B、C不在同一直线上的形式,就可以考虑“截长补短”,即把不同的线段通过辅助线联系起来,最终得到所要求的等量关系.事实上,“截长补短”意味着两种方法:一是“截长”(在A上截取B或C),二是“补短”(在B上延长C得A或在C上延长B得A).这两种方法在三角形中基本上是互补的,截长补短不适用的情况主要在圆中才有体现(详见9年级与“圆”相关的专题).还有以下几点在证明三角形全等中需要特别注意.(1)三角形中,大量存在“等量代换”的技巧,即使没有告诉我们“A=B”.(2)即使只告诉一般的三角形,通过辅助线,通过角、边的关系,中间往往会存在大量等腰三角形、等边三角形(这里隐含了“一般与特殊”的思想方法,通常联系等腰三角形、等边三角形,一般三角形的情况比较少).(3)相等会为全等提供可能性:只要出现“A=B”,A和B都属于某个三角形,通过各种方式证明A和B所在的两个三角形全等就可以解决部分问题.再对题4的“截长法”做如下简述:在B党上截取线段BF,使BF=PM,可证得△BPF≌△PBM,从而得到BF=PM,PF⊥B党,即可求得四边形PF党N为矩形,得到PN =党F,即可得证.题7如图7-14所示,在△ABC中,∠ACB=90°,BC=AC,党、E为AB上两点,且∠党CE=45°,求证:A党2+BE2=党E2.满分证明(1)如图7-15所示,将△A党C绕C旋转到如图位置,则△CA党≌△CBF.(2)由∠A=∠ABC=45°,可得∠EBF=∠ABC+∠CBF=∠ABC+∠A=90°,故△BEF为直角三角形,且BF=A党.(3)又因∠AC党+∠ECB=45°,且∠AC党=∠FCB,故∠ECB+∠FCB=∠FCE=45°=∠党CE.(4)由党C=CF,CE=CE,可得△C党E≌△CFE,党E=FE,即BE2+A党2=党E2.技巧贴士勾股定理及其逆定理:在△ABC中,∠C=90° a2+b2=c2(a、b为直角边,c为斜边).根据本题结论,通过等量代换,要将A党、BE、党E置于一个直角三角形中.先由BC=AC这一信息,想到若将△A党C进行旋转,即可得到两对全等的三角形,同时也构建出了一个直角三角形,从而通过三角形的全等,可将所求边转化到同一直角三角形中,从而得到结论.题8如图7-16所示,P为等边△ABC内一点,若AP=3,PB=4,PC=5,求∠APB的度数.满分解答(1)如图7-17所示,过B作∠P'BP=60°,BP'=BP,连接P'P、AP'.(2)由于么P'BP=60°,BP'=BP=4,可得P'P=4,∠P'PB=60°.(3)又因△P'BA≌△PCA,得PC=AP'=5,且AP2+P'P2=AP'2,故∠APP'=90°.(4)即得∠APB=∠P'PB+∠APP'=150°.技巧贴士本题的考点在于3、4、5这三条边长.熟悉直角三角形性质的同学不难发现,若三角形的三边长存在3:4:5的关系时,此三角形便是一个直角三角形.同样常见的例子还有5:12:13等.因此,只要发现这类边长中存在的特殊比例关系,我们便能通过之前所学习过的三角形“平移”、“旋转”、“翻折”的一系列变化方法,得到我们所需要的答案.题9如图7-18所示,在四边形ABC党中,B党平分∠ABC.党P⊥BC于点P,AB+BC =2BP.求证:∠BA党+∠C=180°.满分证明(1)如图7-19所示,过点党作党E⊥BA交BA延长线于点E.(2)由于B党平分∠ABC,故党E=党P(角平分线定理),可得Rt△BE党≌Rt△BP 党,故BE=BP.(3)由于AB+BC=2BP,得到AB+BP+PC=BP+BE,所以AB+PC=BE,即得PC =BE-AB=AE.(4)又由于党E=党P,∠党EA=∠党PC=90°,且AE=CP,可得△党EA≌△党PC,得到∠EA党=∠C.(5)由于∠BA党+∠EA党=180°,即得∠BA党+∠C=180°.技巧贴士在看到角平分线时,要想到角平分线上任一点到两边的垂直距离相等(角平分线定理).本题往往还会以另一种形式出现:已知B党平分∠ABC,党P上BC于点P,∠BA 党+∠C=180°,求证AB+BC=2BP,解题思路类似.思维点评旋转是图形的基本运动,是初中数学几何中比较常见的解题技巧.在一些特殊的几何图形(如等边三角形、正方形等)中经常出现,我们往往将这些图形中的某一部分旋转一定角度,为正确地解决问题提供可能.旋转的关键在于等量“A=B”,A边所在的三角形固定不变,将B边所在的三角形进行旋转,使A、B重合形成一个新的图形.并且,旋转点往往还有一个特殊情况:旋转点是三条、四条线段的交点.比如题7中的C点(C点有四条线段经过,故其他几点不作考虑);题9中的党点(党点有四条线段经过,故其他几点不作考虑);至于题8的旋转点,可以为点A或点B,旋转的最终情况就是如上情况,如果旋转到右半侧(以点C或点B为旋转点),解答方式类似.。
2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。
第八讲 三角形(一)专项一 三角形的概念及重要线段 知识清单 1. 三角形的定义 由不在同一条直线上的三条线段 所围成的图形叫做三角形.2. 三角形的分类3. 三角形的三边关系三角形的任意两边之和 第三边,任意两边之差 第三边.三角形具有 性.4. 三角形中的重要线段考点例析例1 若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是 .(写出一个即可)分析:根据三角形的三边关系“第三边大于两边之差,小于两边之和”,求得第三边长的取值范围.归纳:三角形的三条边必须满足“任意..两边之和大于第三边”,一定不要忽略“任意”二字,在具体应用时,根据“判断两条较短的线段之和是否大于第三条较长线段”确定是否能构成三角形.按边分 三边都不相等的三角形 等腰三角形 等边三角形 底边和腰不相等的等腰三角形 按角分 锐角三角形直角三角形钝角三角形例2(2021·聊城)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D和E,AD与CE交于点O,连接BO并延长,交AC于点F.若AB=5,BC=4,AC=6,则CE∶AD∶BF的值为.分析:根据三角形三条高所在的直线交于一点,可得BF⊥AC,再根据等积法得到CE∶AD∶BF的值.归纳:正确理解三角形的三种重要线段——中线、角平分线和高的概念,并会画出这三种线段.其中,三角形的高不一定是在三角形的内部,钝角三角形的两条高在外部,直角三角形的高与两条直角边重合.跟踪训练1.下列长度的三条线段与长度为5的线段首尾依次相连能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,22.(2021·衢州)如图,在△ABC中,AB=4,AC=5,BC=6,D,E,F分别是AB,BC,CA的中点,连接DE,EF,则四边形ADEF的周长为()A. 6B. 9C. 12D. 15第2题图第4题图3.三个数3,1-a,1-2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为.4.如图,在△ABC中,AB=AC=2,P是BC上任意一点,PE⊥AB于点E,PF⊥AC于点F.若S△ABC=1,则PE+PF= .专项二三角形中的角知识清单1. 三角形的内角和等于,三角形的外角和等于.2. 三角形的一个外角等于两个内角的和,三角形的一个外角任何一个与它不相邻的内角.考点例析例1 将一副三角尺按图1所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是()A. 15°B. 30°C. 45°D. 60°图1分析:如图1,利用平行线的性质可求得∠1的度数,再利用三角形外角的性质可求∠AFD的度数.例2 如图2是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)°.图2分析:延长EF,交CD于点G,依据三角形的内角和定理可求∠ACB,根据对顶角相等可得∠DCE,再由三角形外角的性质得到∠DGF的度数,由∠EFD=110°进而可得∠D的度数.归纳:解决有关三角形角度问题时,要注意运用三角形内角和定理、三角形外角的性质定理.求三角形的内角平分线或外角平分线组成的角的度数时,常常运用三角形内角和定理及三角形的内角与外角的关系解决.特别注意在运用三角形外角的性质时,一定要牢记“不相邻”的条件.跟踪训练1.如图,已知直线l1,l2,l3两两相交,且l1⊥l3.若∠α=50°,则∠β的度数为()A. 120°B. 130°C. 140°D. 150°第1题图第2题图第3题图第4题图2.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB.若∠CDE=160°,则∠B的度数为()A. 40°B. 50°C. 60°D. 70°3.(2021·陕西)如图,点D,E分别在线段BC,AC上,连接AD,BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A. 60°B. 70°C. 75°D. 85°4.将一副三角尺如图所示放置,点D在边AC上,BC∥EF,则∠ADE的大小为°.5.如图,BE是△ABC的角平分线,在AB上取点D,使BD=DE.(1)求证:DE∥BC;(2)若∠A=65°,∠AED=45°,求∠EBC的度数.第5题图专项三全等三角形知识清单1. 定义:能够__________的两个三角形叫做全等三角形.2. 性质:全等三角形的对应角__________、对应边__________、对应线段(角平分线、高、中线、中位线)_________.3. 判定:(1)两边及其_________分别相等的两个三角形全等(SAS);(2)两角及其_________分别相等的两个三角形全等(ASA);(3)三边分别相等的两个三角形全等(SSS);(4)两角分别相等且_________相等的两个三角形全等(AAS).4. 直角三角形全等的判定:除上述的方法外,还有HL:__________和一条直角边分别相等的两个_________全等.5. 常见的全等模型平移型:旋转型:对称型:考点例析例1 如图1,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)图1分析:条件中给出了AC=AD,∠1=∠2,根据全等三角形的判定方法添加另外一个条件即可.归纳:在寻找三角形全等的条件时,要注意结合图形,挖掘图形中隐含的公共边、公共角、对顶角、平行线的内错角、中点、中线、角平分线等.在书写时,要注意把表示对应顶点的字母写在对应的位置上.例2 (2021·南充)如图2,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD 于点F.求证:AF=BE.图2分析:欲证AF=BE,可证△ACF≌△BAE,已经具备了AB=AC.根据∠BAC=90°,BE⊥AD,CF⊥AD可得∠BEA=∠AFC=90°,再根据同角的余角相等得∠F AC=∠B,由AAS证明三角形全等.证明:归纳:由于全等三角形的对应边相等,对应角相等,可以通过证三角形全等来证明线段相等或者角相等.一般思路是找出两线段或两角所在的两个三角形,然后寻找证这两个三角形全等所需的条件.跟踪训练1.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB 的平分线.这里构造全等三角形的依据是()A. SASB. ASAC. AASD. SSS第1题图第2题图2.如图,在四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.3.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.第3题图4.如图,D,E分别是AB,AC的中点,BE,CD相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.第4题图5.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论.(只要求写出一种正确的选法)(1)你选的条件为、,结论为;(2)证明你的结论.第5题图专项四等腰三角形知识清单1.等腰三角形(1)等腰三角形的性质:等腰三角形的两个相等(简称为:等边对等角);等腰三角形底边上的、底边上的,顶角的互相重合(简称:等腰三角形的);等腰三角形是轴对称图形.(2)等腰三角形的判定:如果一个三角形有两个相等,那么这两个角所对的也相等(简称为:等角对等边).2.等边三角形(1)等边三角形的性质:等边三角形的内角都相等,且都等于°;等边三角形的三条都相等;等边三角形是轴对称图形,它有条对称轴.(2)等边三角形的判定:都相等的三角形是等边三角形;都相等的三角形是等边三角形;有一个角是60°的三角形是等边三角形.考点例析例1如图1,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连接AP,则∠BAP的度数是.图1分析:根据等腰三角形的性质可以得到△ABC 各内角的度数,然后根据题意,画出图形,分情况讨论求出∠BAP 的度数即可.例2 如图2,在△ABC 中,∠A =40°,∠ABC =80°,BE 平分∠ABC 交AC 于点E ,ED ⊥AB 于点D ,求证:AD =BD .图2分析:先判定△ABE 为等腰三角形,然后根据等腰三角形的“三线合一”证出AD =BD .证明:归纳:等腰三角形的性质及其推论是解决与等腰三角形有关的角度计算、判定两角相等以及两线垂直的主要途径. 跟踪训练1.在△ABC 中,∠BAC =90°,AB ≠AC .用无刻度的直尺和圆规在BC 边上找一点D ,使△ACD 为等腰三角形.下列作法不正确的是( )A B C D 2.已知a ,b 是等腰三角形的两边长,且a ,b 235a b -+(2a +3b -13)2=0,则此等腰三角形的周长为( )A. 8B. 6或8C. 7D. 7或83.如图,在4×4的正方形网格中有两个格点A ,B ,连接AB ,在网格中再找一个格点C ,使得△ABC 是等.腰直角...三角形,满足条件的格点C 的个数是( ) A. 2 B. 3 C. 4 D. 5第3题图4.如图,已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.第4题图5.在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,在△ABC中,∠ABC=∠ACB,点D在AB边上(不与点A,B重合),点E在AC边上(不与点A,C重合),连接BE,CD,BE与CD相交于点F.若,求证:BE=CD.注:如果选择多个条件分别作答,按第一个解答计分.第5题图专项五三角形中的数学思想1. 转化思想将所要研究和解决的问题转化为另一个较容易解决的问题或已经解决的问题,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”问题转化为“简单”问题.例1如图,在△ABC中,∠ABC的平分线交AC于点D,过点D作DE∥BC,交AB于点E.(1)求证:BE=DE;(2)若∠A=80°,∠C=40°,求∠BDE的度数.分析:(1)欲判定BE=DE,可转化为判定∠EBD=∠BDE;(2)先根据三角形内角和,求∠A BC的度数,再利用角平分线的性质求∠E BD的度数,进而求得∠BDE的度数.解:2. 分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分析,然后综合得解,这就是分类讨论思想.分类讨论时要注意不重复、不遗漏.等腰三角形是一种特殊而又十分重要的三角形,在求解有关等腰三角形的问题时,当腰和底不明确或顶角和底角不明确时,一定要注意对等腰三角形进行分类讨论.例2 过等腰三角形顶角顶点的一条直线,将该等腰三角形分成的两个三角形均为等腰三角形,则原等腰三角形的底角度数为.分析:首先根据题意画出符合题意的所有图形,然后利用等腰三角形的性质求解即可得答案.跟踪训练1.如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B= °.第1题图第2题图2.如图,在矩形ABCD中,AB=3,AD=4,E,F分别是边BC,CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE= 时,△AEC′是以AE为腰的等腰三角形.3.如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.第3题图参考答案专项一三角形的概念及重要线段例1 2(答案不唯一1<a<7即可)例2 12∶15∶101. D2. B3. -3<a<-24. 1专项二三角形中的角例1 A例2 减少101. C2. D3. B4. 755.(1)证明:因为BE是△ABC的角平分线,所以∠ABE=∠EBC.因为DB=DE,所以∠ABE=∠DEB.所以∠DEB=∠EBC.所以DE∥BC.(2)解:因为∠A=65°,∠AED=45°,所以∠BDE=∠A+∠AED=65°+45°=110°.因为∠ABE=∠DEB,所以∠EBC=∠ABE=12(180°-∠BDE)=12×(180°-110°)=35°. 专项三全等三角形例1 ∠B=∠E或∠C=∠D或AB=AE(写一个即可)例2 因为∠BAC=90°,所以∠BAE+∠F AC=90°.因为BE⊥AD,CF⊥AD,所以∠BEA=∠AFC=90°.所以∠BAE+∠B=90°.所以∠F AC=∠B.又AC=BA,所以△ACF≌△BAE.所以AF=BE.1. D2. AB=AD或∠ACB=∠ACD或∠D=∠B(写一个即可)3. 证明:因为AD=BE,所以AD+BD=BE+BD,即AB=DE.因为AC∥DF,所以∠A=∠EDF.又AC=DF,所以△ABC≌△DEF.所以BC=EF.4. 证明:(1)在△BOD和△COE中,∠BOD=∠COE,∠B=∠C,BD=CE,所以△BOD≌△COE(AAS). 所以OD=OE.(2)因为D,E分别是AB,AC的中点,所以AD=BD=12AB,AE=CE=12AC.因为BD=CE,所以AE=AD,AB=AC.又∠B AE=∠C AD,所以△ABE≌△ACD.5. 解:(1)①③②(或②③①)(2)证明:在△AOC和△BOD中,∠A=∠B,∠AOC=∠BOD,OC=OD,所以△AOC≌△BOD(AAS).所以AC=BD.专项四等腰三角形例1 15°或75°例2 因为BE平分∠ABC,所以∠ABE=12∠ABC=12×80°=40°.因为∠A=40°,所以∠A=∠ABE.所以AE=BE.所以△ABE为等腰三角形.因为ED⊥AB,所以AD=BD.1. A2. D3. B4. 证明:在△AOB和△DOC中,因为∠A=∠D,∠AOB=∠DOC,AB=DC,所以△AOB≌△DOC.所以OB=OC.所以∠OBC=∠OCB.5. 解:选择条件①,证明:因为∠ABC=∠ACB,所以AB=AC.又∠A=∠A,AE=AD,所以△ABE≌△ACD.所以BE=CD.选择条件②,证明:因为∠ABC=∠ACB,所以AB=AC.又∠A=∠A,∠ABE=∠ACD,所以△ABE≌△ACD.所以BE=CD.选择条件③,证明:因为∠ABC=∠ACB,所以AB=AC.因为FB=FC,所以∠FBC=∠FCB.所以∠ABC-∠FBC=∠ACB-∠FCB,即∠ABE=∠ACD.又∠A=∠A,所以△ABE≌△ACD.所以BE=CD.(写出其中一种情况即可)专项五三角形中的数学思想例1 (1)因为BD平分∠ABC,所以∠EBD=∠CBD.因为DE∥BC,所以∠BDE=∠CBD.所以∠EBD=∠BDE.所以BE=DE.(2)因为∠A=80°,∠C=40°,所以∠ABC=180°-∠A-∠C=60°.因为BD平分∠ABC,所以∠EBD=12∠ABC=30°.由(1)知∠BDE=∠EBD=30°.例2 36°或45°1. 542. 78或433. 证明:因为BD∥AC,所以∠DBE=∠C.又BD=C B,BE=CA,所以△BDE≌△CBA.所以∠D=∠ABC.。