Englisjh 聚氨酯改性不饱和聚酯树脂
- 格式:pdf
- 大小:179.16 KB
- 文档页数:8
不饱和聚酯树脂胶水不饱和聚酯树脂胶水是一种常见的胶水类型,广泛应用于建筑、汽车、航空航天、电子、家具等行业。
它具有优异的粘接性能和耐候性,适用于多种材料的粘接和修复。
本文将对不饱和聚酯树脂胶水的特性、应用领域和使用方法进行介绍。
不饱和聚酯树脂胶水是一种由不饱和聚酯树脂、填料、稀释剂和固化剂等组成的胶水。
它具有粘接强度高、耐化学品侵蚀、耐高温、耐候性好等特点。
不饱和聚酯树脂胶水在固化过程中可以通过光线、热源或添加催化剂等方式进行固化,固化后具有良好的机械性能和耐久性。
不饱和聚酯树脂胶水广泛应用于建筑行业,用于玻璃钢制品的制造。
玻璃钢是一种由玻璃纤维增强材料与不饱和聚酯树脂胶水复合而成的复合材料,具有高强度、耐腐蚀、耐老化等特点。
不饱和聚酯树脂胶水作为玻璃钢制品的粘接剂,能够有效提高制品的粘接强度和密封性能。
在汽车制造过程中,不饱和聚酯树脂胶水被广泛用于车身修复和零部件的粘接。
它可以有效粘接汽车车身板材,提供优异的抗冲击和耐腐蚀性能,同时具有较好的刚性和柔韧性,能够适应车身在行驶过程中的振动和变形。
航空航天领域对于材料的要求非常严格,不饱和聚酯树脂胶水因其优异的性能在航空航天领域得到了广泛应用。
它常用于飞机外壳的制造和修复,能够提供良好的耐候性和抗冲击性,同时具有较低的密度,有助于减轻飞机的重量。
电子行业是另一个重要的应用领域,不饱和聚酯树脂胶水被广泛用于电子元件的封装和固定。
它具有良好的绝缘性能和耐高温性能,能够有效保护电子元件,并提供稳定的工作环境。
在家具制造过程中,不饱和聚酯树脂胶水常用于木材和人造板材的粘接。
它能够提供高强度的粘接,使家具具有良好的结构稳定性和耐久性。
不饱和聚酯树脂胶水的使用方法相对简单。
首先,将胶水均匀涂布在待粘接的表面上,然后将需要粘接的材料放置在胶水上,并施加适当的压力。
在固化过程中,可以根据需要选择光线、热源或添加催化剂等方式来加速固化。
固化时间一般为数分钟到数小时,具体时间取决于环境条件和胶水的配方。
不饱和聚酯树脂的用途不饱和聚酯树脂是工业界广泛使用的有机树脂材料,是有机可塑料材料中使用最多的一类。
它由聚酯、芳香族有机键和不饱和有机键组成,具有良好的机械性能、耐腐蚀性能、抗拉性能和耐热性能,以及耐化学剂的特性。
因此,不饱和聚酯树脂的使用受到许多行业的青睐。
不饱和聚酯树脂的主要应用有:1、涂料:不饱和聚酯树脂可以用作涂料,如外涂、内层涂料等,具有耐气候变化性能好、具有良好的抗腐蚀性和抗紫外线性能,以及耐热性能。
2、塑料:不饱和聚酯树脂可以用作塑料,例如电线护套、快速熔断器套管、管道护套等,具有良好的机械性能和耐老化性能,广泛应用于农业管道、电力管道、石油化工管道、化肥管道等场合。
3、制造:不饱和聚酯树脂可以用作制造,如密封件、螺栓、螺钉和柔性连接管等,具有良好的耐热性能和耐化学剂性能,广泛应用于化工、冶金和电力行业等行业。
4、化学:不饱和聚酯树脂也可以用作复合材料,可以和其他材料混合制成各种复合材料,增加材料的强度、耐温性、耐腐蚀性。
另外,不饱和聚酯树脂也可以用于模型研究、实验室制品材料、静电喷涂和封闭电路板等方面,增加材料的抗腐蚀性、绝缘性和耐湿性。
以上就是不饱和聚酯树脂的用途,由此可见不饱和聚酯树脂在化工、冶金、涂料等行业的广泛应用,为工业提供了大量的有用材料。
不饱和聚酯树脂具有良好的机械性能、耐热性能、耐化学剂性能和抗腐蚀性能,所以其在建筑、船舶、飞行器、家具和户外设备等行业中也受到重视。
由于不饱和聚酯树脂的特性,可以用来代替铝制件,可以使用户的成本降低,改善产品的质量。
除了上述应用外,不饱和聚酯树脂也可以用于汽车护套、仪器箱以及工业电气等方面,可以增强产品的抗腐蚀性,提高产品的抗老化性,提高产品的使用寿命。
在这里提醒大家,在使用不饱和聚酯树脂时一定要注意,要避免与长期暴露在高温环境中的其他物质发生反应,以免影响它的性能,还要注意及时更换不饱和聚酯树脂,以保证其质量。
总之,不饱和聚酯树脂是一种优质的树脂材料,由于其独特而实用的特性和功能,受到许多行业的青睐。
不饱和聚酯、环氧树脂、聚氨酯树脂不饱和聚酯、环氧树脂和聚氨酯树脂是三种常见的树脂材料,它们在工业生产和日常生活中都有广泛的应用。
本文将分别介绍这三种树脂的特性和用途。
一、不饱和聚酯不饱和聚酯是一种由不饱和酯类和交联剂组成的树脂。
它具有以下几个特点:1. 优异的耐化学性:不饱和聚酯对酸、碱、溶剂等具有较高的耐受性,因此广泛应用于化学工业领域。
2. 良好的加工性能:不饱和聚酯在加工过程中可以通过调整配方和控制反应条件来获得不同的性能,因此具有较高的灵活性。
3. 高强度和硬度:不饱和聚酯具有较高的强度和硬度,可以用于制作各种结构件和耐磨件。
4. 耐候性好:不饱和聚酯具有较好的耐候性,可以在室外环境中长期使用而不受到明显的损伤。
不饱和聚酯广泛应用于建筑、汽车、电子、船舶等领域。
在建筑领域,不饱和聚酯可用于制作管道、储罐、隔热材料等;在汽车领域,不饱和聚酯可用于制作车身件、内饰件等;在电子领域,不饱和聚酯可用于制作绝缘材料等。
二、环氧树脂环氧树脂是一种由环氧基团和交联剂组成的树脂。
它具有以下几个特点:1. 优异的粘结性能:环氧树脂可以与多种材料粘结,具有较高的粘结强度和耐久性。
2. 优良的电气性能:环氧树脂具有良好的绝缘性能和耐电弧性能,可用于制作电子元器件和电气绝缘材料。
3. 良好的耐化学性:环氧树脂具有较好的耐酸碱、溶剂等化学物质的性能,因此在化工领域有广泛应用。
4. 高温性能好:环氧树脂具有较好的耐高温性能,可用于制作耐高温结构件。
环氧树脂广泛应用于航空航天、电子、化工等领域。
在航空航天领域,环氧树脂可用于制作飞机部件、航天器外壳等;在电子领域,环氧树脂可用于制作电路板、封装材料等;在化工领域,环氧树脂可用于制作储罐、管道等。
三、聚氨酯树脂聚氨酯树脂是一种由异氰酸酯和多元醇组成的树脂。
它具有以下几个特点:1. 优异的耐磨性:聚氨酯树脂具有较好的耐磨性,可用于制作耐磨材料和涂料。
2. 良好的弹性和韧性:聚氨酯树脂具有较好的弹性和韧性,可用于制作弹性体和缓冲材料。
不饱和聚酯树脂分类
不饱和聚酯树脂是一类合成树脂,根据不同的结构和特性,可以分为以下几个主要类型:
1. 酯基聚合物:由酸酐和醇反应形成的聚合物,例如无增塑剂的对苯二甲酸乙二醇酯(UP)树脂和邻苯二甲酸异丙醇酯(ISOUP)树脂。
2. 酚醛树脂(PF):由酚和醛反应形成的树脂,具有较高的热稳定性和耐化学品性能。
常见的酚醛树脂包括酚醛树脂(PF)和酚醛树脂(UF)。
3. 环氧树脂(EP):由环氧基物质和胺或酸酐反应形成的树脂,具有优异的物理性能和耐化学品性能。
常见的环氧树脂包括环氧树脂(EP)和丙烯酸树脂。
4. 不饱和聚酯树脂(UPR):由不饱和酸、醇和单体反应形成的树脂。
根据单体的不同,不饱和聚酯树脂可以分为不饱和聚酯树脂(UP)和丙烯酸树脂。
5. 聚醚树脂:由聚醚基物质和异氰酸酯反应形成的树脂,具有优异的耐磨性和耐候性能。
以上是几种常见的不饱和聚酯树脂分类,不同类型的树脂具有不同的性能和用途,可以根据需要选择合适的材料。
聚氨酯改性不饱和聚酯清漆参考配方及生产工艺一、性能概述本品具有丰满度好,硬度高、耐磨,外观结实、光亮,颜色浅淡、透明度好等优点,并可在常温下干燥,是目前使用较为广泛的涂料。
但不饱和聚酯清漆在耐侯性、付着力、柔韧性等方面还存在一定的缺陷,而聚氨酯对不饱和聚氨酯清漆改性,则显著提高了其耐候性、柔韧性和附着力。
二、主要用途本品可以广泛的用于各种高级木器,如电视机外壳、缝纫机、高级家具等。
三、生产原理本品是由不饱和二元酸与二元醇经缩聚制成的直链聚酯树脂。
他是以不饱和二元酸酐与二元醇缩聚后加苯乙烯为一组分,以甲苯二乙氰酸酯-三羟甲基丙烷加成物为另一组分配制而成,使用时加入定量的引发剂和固化促进剂。
四、原材料1、不饱和聚酯原料规格用量(kg原料/t产品)乙二醇1,2-丙二醇顺丁烯二酸酐苯二甲酸酐二甲苯(回流用)苯乙烯(按聚氨酯出料量)甲苯对苯二酚工业品工业品工业品工业品工业品工业品工业品工业品131.6570.10148.60149.6525.03:7(苯乙烯7)15.010.02、三羟甲基丙烷预处理原料规格用量(kg原料/t产品)三羟甲基丙烷环己酮纯苯环己酮工业品工业品工业品CP,无水91.891.820.050.03、加成反应原料规格用量(kg原料/t产品)甲苯二异氰酸酯环乙酮(甲)三羟甲基丙烷环己酮液环己酮(乙)工业品(98%)CP,无水工业品CP,无水365.550.0233.6265.5五、工艺流程1、不饱和聚酯搅拌(乙二醇、丙二醇、顺丁烯二酸酐)→反应→去溶剂→搅拌(对苯二酚)→稀释(甲苯)→搅拌(苯乙烯)→测试→成品2、三羟甲基丙烷预处理搅拌(纯苯、工业环已酮、三羟甲基丙烷)→加热溶解→蒸馏(苯、水)→调配(无水环己酮)→成品3、二异氰酸酯-三羟甲基丙烷加成反应搅拌(甲苯二异氰酸酯、无水环己酮(甲))→反应(三羟甲基丙烷、环己酮液)→稀释(无水环己酮(乙))→过滤→成品六、所需设备设备型号用量(kg原料/t产品)甲苯二异氰酸酯环乙酮(甲)三羟甲基丙烷环己酮液环己酮(乙)工业品(98%)CP,无水工业品CP,无水365.550.0233.6265.5七、操作工艺(1)不饱和聚酯:投料前先检查反应釜是否清洁,设备是否完好。
材料研究高强度高伸长率聚氨酯改性不饱和聚酯丁学文(上海新天和树脂有限公司,上海201404)摘 要 利用聚氨酯改性的方法合成了一种新型不饱和聚酯,该树脂可以室温固化,固化后拉伸强度达20MPa 、断裂伸长率高达100%以上,可用于制作柔韧性要求较高的制品,亦可以加入其它树脂中,提高材料的冲击性能和断裂伸长率。
关键词 韧性;不饱和聚酯树脂;断裂伸长率;冲击强度Synthesis of H igh -strength and H igh -elongationPolyurethane Modified U nsaturated PolyesterDI NG Xue -wen(Shanghai New T ianhe Resin C O.LT D ,201404)ABSTRACT A new type of unsaturated polyester resin was synthesized with polyurethane m odified method.This resin can be cured at ambient temperature and the tensile strength and elongation at break can be up to 20MPa and 104%respectively.It can be used to produce high flexible products or be added to normal unsaturated polyester resins toimprove their anti -impact proper 2ties and elongation at break.KEY WORDS unsaturated polyester ;polyurethane m odified ;high elongation1 前 言不饱和聚酯作为热固性树脂的主要品种之一,由于其优良的物理机械性能和良好的工艺性能,近年来在许多领域得到很大的发展。
不饱和聚酯树脂基础知识1.不饱和聚酯树脂的定义“聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。
这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯,这种不饱和聚酯溶解于有聚合能力的单体中(一般为苯乙烯)而成为一种粘稠液体时,称为不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。
因此,不饱和聚酯树脂可以定义为由饱和的或不饱和的二元酸与饱和的或不饱和的二元醇缩聚而成的线型高分子化合物溶解于单体(通常用苯乙烯)中而成的粘稠的液体。
2.不饱和聚酯树脂的特性不饱和聚酯树脂是一种热固性树脂,当其在热或引发剂的作用下,可固化成为一种不溶不融的高分子网状聚合物。
但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”,简称FRP。
“玻璃钢”的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。
以不饱和树脂为基材的玻璃钢(UPR-FRP)具有以下特性:轻质高强:FRP的密度为1.4-2.2g/cm3,比钢轻4-5倍,而其强度却不小,其比强度超过型钢、硬铝和杉木。
耐腐蚀性能良好:UPR-FRP是一种良好的耐腐蚀性材料,能耐一般浓度的酸、碱、盐类,大部分有机溶剂、海水、大气、油类,对微生物的抵抗力也很强,正广泛应用于石油、化工、农药、医药、染料、电镀、电解、冶炼、轻工等国民经济诸领域,发挥着其他材料无法替代的作用。
电性能优异:UPR-FRP绝缘性能极好,在高频作用下仍能保持良好的介电性能。
它不反射无线电波,不受电磁的作用,微波透过性良好,是制造雷达罩的理想材料。
用它制造仪表、电机、电器产品中的绝缘部件能提高电器的使用寿命和可靠性。
独特的热性能:UPR-FRP的导热系数为0.3-0.4Kcal/mh℃,只有金属的1/100-1/1000,是一种优良的绝热材料,用其制成的门窗是第五代新型节能建材。
原位聚合聚氨酯改性不饱和聚酯树脂的制备与性能研究的开题报告一、研究背景改性聚酯树脂被广泛应用于涂料、粘合剂、复合材料等领域中。
其优异的物理性质和化学稳定性使得其成为现代工业中应用最为广泛的高分子材料之一。
然而,传统的聚酯树脂不饱和度低,导致其固化速度慢、耐热性差、强度和硬度低等缺点,限制了其在一些特定领域的应用。
为了克服这些缺点,近年来研究人员提出了许多改性聚酯树脂的方法,其中一种经典的方法便是将聚氨酯加入聚酯树脂中进行共混。
在聚氨酯与聚酯树脂的共混反应中,原位聚合聚氨酯与聚酯树脂的共混具备了一定的优势。
这种方法通过原位聚合将聚氨酯合成在聚酯树脂中,避免了传统的混合过程中,由于两种材料之间界面的存在而产生的散相,从而提高了材料的耐热性、固化速度以及力学性能。
二、研究内容本文拟采用原位聚合聚氨酯改性不饱和聚酯树脂的制备与性能研究。
具体内容包括以下几个方面:1、合成原位聚合聚氨酯。
本文采用二异氰酸酯与二元醇的反应合成聚氨酯;通过控制配比和反应条件,制备具有一定分子量和亲水性的聚氨酯。
2、制备原位聚合聚氨酯改性不饱和聚酯树脂。
将聚氨酯和不饱和聚酯树脂混合,通过在聚酯树脂的酸性催化下触媒聚氨酯与聚酯树脂间的酯键,实现聚氨酯的原位聚合,并形成聚酯树脂的改性体系。
3、对原位聚合聚氨酯改性不饱和聚酯树脂的性能进行测试。
通过FT-IR红外光谱分析、热重分析、固化动力学研究和力学性能测试等方法,考察改性后的聚酯树脂的物理性质、化学稳定性以及机械性能等指标,为进一步优化改性聚酯树脂的制备和应用提供理论上的参考。
三、研究意义本研究旨在探究原位聚合聚氨酯改性不饱和聚酯树脂的制备方法和性能特点,为改善聚酯树脂的缺点、提高其在涂料、粘合剂、复合材料等领域中的应用效果提供技术支持,具有一定的理论和应用价值。
不饱和聚酯树脂不饱和聚酯树脂Unsaturated Polyester Resin性质不饱和聚酯树酯,简称聚酯,是二元醇与饱和二元酸和不饱和二元酸(或酸酐)经缩聚反应制得的线型缩聚物。
在分子主链上具有重复的酯键及不饱和双键,故称为不饱和聚酯。
不饱和双键具有较高的反应活性,当加入乙烯基单体(如苯乙烯)时,在引发剂的引发下,大分子主链上的双键打开与乙烯基单体发生共聚反应,使大分子交联后形成不溶、不熔的三维网状结构高聚物。
因此,通常把不饱和聚酯与乙烯基单体(交联剂)混合得到的粘稠溶液称为“不饱和聚酯树酯”。
制备不饱聚酯常用的二元酸和酸酐有顺丁烯二酸酐、反西烯二酸酐、邻苯二甲酸酐、邻苯二甲酸、已二酸、癸二酸、丙二酸等;常用的二元醇有乙二醇、丙二醇、一缩二乙二醇、二缩三乙二醇等。
不饱和树脂是在引发剂及促进剂的存在下交联固化,固化方法很多,有热固化、氧化还原系统固化、光敏固化及辐射固化等。
不饱和聚酯树脂种类很多,有通用型、韧性型、耐热型、耐腐蚀型、光稳定型、阻燃型等。
它具有强度高、相对密度小、耐磨、电绝缘性好、光泽度好、耐腐蚀等特点,在工业、农业中都有广泛应用。
用途不饱和聚酯树脂大量用于制造玻璃钢制品及电器浇注制品,如机械设备外壳、反应容器、贮槽、船体、汽车车身、绝缘板、装饰板等。
也用于制造涂料、胶粘剂、原子灰及人造大理石板等。
胶粘剂主要用于聚苯乙烯、有机玻璃、聚碳酸酯、玻璃、陶瓷及混凝土等的粘接。
简要制法以乙二醇(或丙二醇)、顺丁烯二酸酐及邻苯二甲酸酐等为原料,按一定配比经高温缩聚反应制得缩聚物,然后加入交联剂(如苯乙烯)及阻聚剂,于60-80℃混合后,即制得一定粘度的液体树脂。
采用原料(二元酸、二元醇及酸酐)不同,或工艺条件及添加剂不同,就可制得不同用途及类型的产品。
安全与防护本品用塑料桶或镀锌铁桶包装,塑料桶装每桶净重5㎏;铁桶装净重20㎏、100㎏200㎏等。
存放于阴凉干燥处,防火、防晒、防潮。
生产厂上海新华树脂厂、上海天原集团公司、广东中山有机合成厂、广东云浮有机化工厂、山东荏平县化工厂、山东莱西风驰福利化工厂、天津化工厂、天津合成材料厂、北京化工二厂、芜湖山江化学公司、无锡树脂厂、济南树脂厂、岳阳化工总厂、洛阳化工三厂、无锡光明化工厂、常州合成材料厂、江苏昆山玻璃钢化工厂、沈阳石油化工厂、南京金陵巴斯夫树脂公司、秦皇岛耀华玻璃钢厂、淄博兴华树脂厂、宜兴三木化工公司、南京绝缘材料厂、杭州树脂厂、温州树脂化工厂等。
不饱和聚酯树脂的用途
不饱和聚酯树脂是一种有机合成材料,它由三元醇、多元醛和二元酸的缩合反应制成,具有优异的物理性能、化学稳定性,广泛应用在航空、航天、汽车、建筑、工业制品等行业。
一、建筑行业
不饱和聚酯树脂在建筑行业中广泛应用于涂料,用于墙体、屋顶、地板、金属表面等的涂装,具有优异的耐腐蚀性、防水性、抗老化性,可以保证建筑物长期坚固耐用,提高建筑物的装饰效果。
此外,不饱和聚酯树脂还可以用于制造建筑设备,如门窗、护栏、桥梁、隔墙等,具有优异的耐压性、耐冲击性、耐磨性和易加工性,可以满足建筑设施的各种要求,使建筑物更加安全可靠。
二、汽车行业
不饱和聚酯树脂在汽车行业中也有着重要作用,它可以用于汽车零部件的制造,如发动机、底盘、轮胎等,具有优异的耐热性、耐冲击性、耐老化性,可以大大提高汽车的使用寿命,使之更加安全和可靠。
此外,不饱和聚酯树脂还可以用于汽车漆面的制造,除了具有优异的耐腐蚀性和耐磨性外,还具有良好的光泽
度和颜色保持性,可以让汽车表面永葆无瑕,提高汽车的外观效果。
三、航空航天行业
不饱和聚酯树脂在航空航天行业中也有着广泛的应用,它可以用于飞机和卫星结构部件的制造,具有优异的耐压性、耐温性、耐冲击性和耐磨性,可以保证航空航天器的安全可靠性,使之能够安全驾驶至目的地。
此外,不饱和聚酯树脂还可以用于制造航空航天器的外壳,具有优异的耐腐蚀性、耐湿性和耐老化性,可以保证航空航天器的表面光洁度和稳定性,使之可以在恶劣的环境条件下正常运行。
总之,不饱和聚酯树脂具有优异的物理性能和化学稳定性,广泛应用在航空、航天、汽车、建筑、工业制品等行业,可以满足各种行业的需求,为社会发展做出了重要贡献。
Modification of Unsaturated Polyester Resin by Polyurethane PrepolymersA.Benny Cherian,1Beena T.Abraham,2Eby Thomas Thachil31Department of Chemistry,Union Christian College,Aluva-683102,Kerala,India2Department of Chemistry,S.N.M.College,Maliankara,Kerala,India3Department of Polymer Science and Rubber Technology,Cochin University of Science and Technology,Kochi-682 022,Kerala,IndiaReceived9September2004;accepted15June2005DOI10.1002/app.23131Published online in Wiley InterScience().ABSTRACT:Unsaturated polyester resins(UPRs)are ex-tensively used by thefiber-reinforced plastic(FRPs)indus-try.These resins have the disadvantages of brittleness and poor resistance to crack propagation.In this study,UPRs were chemically modified by reactive blending with poly-urethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of un-saturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer.The prepolymers were based on toluene diisocyanate(TDI)and each of hydroxy-terminated natural rubber(HTNR),hy-droxy-terminated polybutadiene(HTPB),polyethylene gly-col(PEG),and castor oil.Properties like tensile strength, toughness,impact resistance,and elongation-at-break of the modified UPRs show considerable improvement by this modification.The thermal stability of the copolymer is also marginally better.©2006Wiley Periodicals,Inc.J Appl Polym Sci 100:449–456,2006Key words:hybrid polymer networks;impact resistance; polyurethane prepolymers;toughness;unsaturated polyes-ter resinINTRODUCTIONUnsaturated polyester resins(UPRs)are widely used for the fabrication of glass-reinforced plastics(GRP) and other polymeric composites.The widespread use of these resins is due to their relatively low cost,ease of processing,excellent wetting properties,good over-all performance,and the wide variety of grades avail-able.They are generally prepared by the reaction of a saturated diol with a mixture of unsaturated and sat-urated dibasic acids or their mer-cially,the resin is available in the form of solutions containing60–70wt%of the condensate in an unsat-urated coreactant diluent like styrene.Styrene is com-monly used as the comonomer because of its low cost and good compatibility with the resin.Carothers was thefirst to prepare UPR with well-defined polymeric structures.1Typical grades are orthophthalic,isoph-thalic,and bisphenol A resins.The general purpose(GP)grade orthophthalic resin is a blend of styrene with the condensation product of 1,2propylene glycol and a mixture of maleic anhy-dride and phthalic anhydride.When crosslinking is initiated,with the help of a catalyst and an accelerator, styrene forms polystyrene chains,which crosslink the polyester chains at the sites of unsaturation.2The highly crosslinked three-dimensional molecular struc-ture of the cured resin gives high stiffness,strength, glass-transition temperature,and moderate heat and solvent resistance.However,they suffer from a major drawback.They are brittle and have low impact resis-tance and poor resistance to crack propagation.3Al-though failure in GRP is often limited to the resin-reinforcement interface,4areas with relatively low amount offibers are prone to damage when the prod-uct is in use or during demoulding.The damage usu-ally starts as a micro-fracture of the matrix,which on propagation can result in disintegration of the system. UPRs are blended with several materials to improve their impact strength and fracture properties.These additives should be miscible in the uncured resin,but phase separation during the curing is essential,as phase separated blends are tougher than homoge-neous blends.5The miscibility and interfacial proper-ties of the additive and the resin play important roles in the toughening process.6The modification of resin, using elastomer additives,leads to a randomly dis-persed rubbery phase in the material,and creates high dissipation energy during impact failure.Both solid and liquid rubbers are dispersed in the resin for en-hancement of toughness.The toughening effect of an elastomer additive depends on phase separation to provide thefinal morphology and to control the rub-ber particle size and volume fraction.7But the tough-Correspondence to:E.T.Thachil(ethachil@cusat.ac.in). Journal of Applied Polymer Science,Vol.100,449–456(2006)©2006Wiley Periodicals,Inc.ening effect is often modest because of the poor solu-bility of the rubber component in the resin and the low chemical reactivity of the rubber towards polyester end groups.Modification by blending with thermo-plastic additives8is another possibility.The solubi-lized orfinely dispersed thermoplastics are precipi-tated into the interstitial spaces within the crosslinked network as styrene is depleted from the solution dur-ing crosslinking.Block copolymers of UPR with polyurethanes, polyureas,polysiloxanes,polyimides,polyoxazolines, or polyglycols have also been reported.6Another ap-proach is the condensation of hydroxyl or carboxyl-terminated liquid rubbers and the polyester reactants, which result in polyesters containing rubber segments in the main chain.9Modification of UPR with dicyclo-pentadiene,10bismaleimide,11and poly(-caprolac-tone)-perfluro polyethers12is among other reported recent developments.Reactive blending offers anotherattractive possibility.Reactive blendingAcidic and alcoholic chain ends of the resins are chem-ically sensitive.Consequently,embrittlement of the fiber-reinforced unsaturated polyester composites oc-curs when exposed to moisture.Reactive blending with thermoset resins can lead to deactivating the end groups.The mechanical properties of resins and lam-inates can be improved by this technique.Semi inter-penetrating polymer networks(IPNs)and hybrid polymer networks(HPNs)based on UPRs are of cur-rent interest.Blending of epoxy resin and polyesters resulting in IPNs13–15has been extensively studied. Modification by chemical bonding between elastomer and UPR using methacrylate end-capped carboxy-ter-minated nitrile rubber16or isocyanate end-capped po-lybutadiene17or epoxy-terminated nitrile rubber18is a promising development.Alcoholic and carboxyl end groups of the resin can be blocked by isocyanates that form covalent urethane bonds.Hybrid polymer networks of polyurethane pre-polymers and unsaturated polyester are a related devel-opment.19–22Segmented polyester polyurethanes have been studied by Cooper and coworkers.23,24Chou and Lee20studied the morphology–kinetics–rheology rela-tionship of polyurethane(PU)-unsaturated polyester in-terpenetrating polymer networks(IPNs).They found that the PU rich phase formed the dispersed domains in the continuous UP rich phase.The interaction between the two reactive systems may give rise to a synergistic effect on the properties of IPN/HPN.The interactions have been attributed to an increase in crosslink density because of mutual interpenetration of network chains.25 Other specific interactions like grafting26and opposite charged group interactions27between the two networks are possible reasons for property enhancement.In the present study,hybrid networks of polyesterand polyurethane prepolymers are investigated.Ure-thane linkages are formed by reaction between termi-nal hydroxyl and carboxyl groups of UPR and isocya-nate groups of a PU prepolymer.The schematic rep-resentation of PU-UPR HPN is shown in Figure1.Thepolyols selected were HTNR,HTPB,PEG,and castoroil.HTPB has superior water resistant properties tothat of the conventional polyols.HTNR is a hydroxyl-terminated elastomer that can be easily prepared byphoto depolymerization.PEG chosen had a molecularweight of6000.Castor oil is a naturally occurringpolyol,which contains the glyceride ester of ricinoleicacid.Among various diisocyanates,TDI has been cho-sen for this investigation.EXPERIMENTALMaterialsGP grade UPR(Bakelite Hylam resin HSR8113M), methyl ethyl ketone peroxide(catalyst),and cobaltnapthenate(accelerator)were supplied by M/s Sha-ron Engineering Enterprises,Cochin,India.Toluenediisocyanate and polyethylene glycol(M nϭ6000)was supplied by E.Merck India Ltd,Bombay,India.HTPB(M nϭ2620)was obtained from Vikram Sarabhai Space Centre,Thiruvananthapuram,India.High pu-rity castor oil was procured locally.HTNR(M nϭ3000and hydroxyl valueϭ36.35mg of KOH/g)was prepared from ISNR-5grade natural rubber dissolved in toluene by photo-depolymeriza-tion in the presence of H2O2.28Natural rubber was first masticated for30min.A5wt%solution of this NR in toluene was mixed with a30wt%H2O2solu-tion and methanol in the volume ratio20:1:3,respec-tively.Irradiation using sunlight was carried out in a closed glass vessel for50h,with constant stirring.The Figure1Schematic representation of PU-UPR HPN forma-tion.450CHERIAN,ABRAHAM,AND THACHILdepolymerised and hydroxy-terminated NR was re-covered by precipitation with methanol and purified by repeated precipitation.Molecular weight was de-termined by end group analysis and hydroxyl value was estimated by well-known procedures.Preparation of polyurethane prepolymersPolyurethane prepolymers were prepared via the re-action of TDI and different polyols.The polyols were initially degassed under vacuum for 2h at 50°C to remove moisture.PU prepolymers were prepared by mixing TDI and each of the polyols in the molar ratio 2.4:1at room temperature and keeping at 75°C for 4h.The O OH groups in the polyol as well as O OH and O COOH end groups in the UPR were taken intoaccount for the calculation of NCO/OH (and COOH)stochiometry.Modification of UPR by polyurethane prepolymers Unmodified resin was first cured at room temperature by a catalyst (methyl ethyl ketone peroxide dissolved in dimethyl phthalate containing 60%peroxide)and accelerator (6%solution of cobalt napthenate in sty-rene)combination.These were used in concentrations of 1and 0.5%of the weight of the resin,respectively.The resin was then poured into appropriate molds coated with a releasing agent.Curing was done at room temperature for 24h,followed by post curing at 80°C for 3h.Varying amounts (0–10wt %)of these PU prepoly-mers were added to the resin.The mixture wasstirredFigure 2Tensile strength of modified resin versus PU con-centration.Figure 3Tensile modulus of modified resin versus PUconcentration.Figure 4Elongation at break of modified resin versus PUconcentration.Figure 5Toughness of modified resin versus PU concen-tration.MODIFICATION OF UNSATURATED POLYESTER RESIN 451well for 1h to get a homogeneous liquid.Curing of the blend was done by the same procedure employed for UPR.The samples after post curing were tested for tensile strength,modulus,elongation at break,toughness,im-pact strength,surface hardness,abrasion resistance,and water absorption taking six trials in each case.The tensile properties were tested on a Schimadzu Auto-graph Universal Testing Machine (ASTM D 638–89),and Izod impact strength was measured on a Zwick impact tester as per ASTM D 256specifications.A Shore D Durometer was employed for measuring sur-face hardness (ASTM D 2240–86).Abrasion resistance was tested on a Zwick DL 100machine as per DIN 55,516.Water absorption was tested as per ASTM D 570.The scanning electron micrographs of fracturesurfaces of unmodified and modified UPR were taken in a Cambridge Instruments S 360Stereoscanner-Ver-sion V02–01.A TA Instruments’TGA Q 50analyser was used to investigate thermal degradation.TA In-struments DSC Q 100equipped with an RCS cooling system was used to study thermal transitions in the samples at a rate of heating of 10°C/min.The damp-ing qualities were measured using fixed frequency dynamic analysis techniques.A dynamic analyser model DMA-983from Dupond,USA,was made of use for this purpose.DMA test was conducted at a con-stant frequency of 1Hz.A temperature ramp was run from room temperature to 200°C at 1°C/min to get an overview of the thermo mechanical behavior of mod-ified and unmodified samples.Soxhlet extraction of cured resin samples using ben-zene was done to determine the amount ofsolubleFigure 6Impact strength of modified resin versus PU con-centration.Figure 7Hardness of modified resin versus PU concentra-tion.Figure 8Abrasion loss of modified resin versus PU con-centration.Figure 9Water absorption of modified resin versus PU concentration.452CHERIAN,ABRAHAM,AND THACHILmatter.Samples for spectral studies were prepared by castingfilms and subsequently extracting them with benzene to remove any unreacted material.The crosslink density was indirectly estimated from the equilibrium swelling data.The volume fraction of polyester(V p)in the swollen samples was calculated.29 V p is linearly related to the crosslink density of the polymer samples.RESULTS AND DISCUSSION PropertiesTwo reactions are possible when the PU prepolymer is blended with UPR and cured.The O NCO end groups of the prepolymer react with O OH and O COOH functionalities present at the chain ends of the poly-ester.This gives rise to new urethane groups and causes chain extension.Secondly,grafting of polysty-rene short chains on to sites of unsaturation can take place.The latter reaction can lead to crosslinking be-tween a)polyester chains b)polyester and PU chains, and c)PU prepolymer chains.Crosslinking between polyester chains,however,will be predominant. Tensile propertiesReferring to Figure2,tensile strength values obtained by adding HTNR-PU prepolymer are higher than that obtained by adding other prepolymers.Tensile strength values reach a maximum on adding progres-sively larger amounts of prepolymer,but addition of rubber beyond5%results in a reduction of tensile strength.It is likely that beyond5%,there is reduced compatibility between the phases.Figure3shows the effect of elastomers on tensile modulus.The modulus values fall steadily for all PU prepolymers.This is due to theflexibility of the elastomer chains.The effect of PU addition on the elongation at break is shown in Figure4.The addition of PEG produced the greatest increase in elongation at break,at5%PU concentra-tion.At higher percentages,intercomponent grafting reduces theflexibility of the polyester chains,resulting in lower elongation at break.Toughness propertiesThe variation in toughness of the cured resin as the PU content increases is shown in Figure5.At5%HTNR concentration,the toughness of the blend is at a max-imum(about288%of the toughness of UPR).Higher molecular weight polyols produce polymer chains with fewer urethane groups.HTNR has greater mo-lecular weight compared with HTPB.The pendent cis methyl groups of HTNR also enhance theflexibility. These soft segments are moreflexible than those pro-duced from low molecular weight polyols.Figure6 shows the variation of impact strength with polyure-thane content.The effect is at a maximum for HTNR at 5%rubber concentration.The impact strength reaches a maximum and then drops for higher levels of rub-ber.The increase in impact strength of HTNR-PU prepolymer results from improvedflexibility of NR chains.The rubber phase absorbs the energy of impact and crack propagation is prevented.TABLE ISummary of Properties of UPR Modified with0–10%PU-PrepolymersProperty UPRMaximum improvement achieved(%)/PU prepolymer concentration(%) PU-HTPB/UPR PU-HTNR/UPRPU-PEG/UPRPU-castoroil/UPRTensile strength(MPa)3811.45/519.95/513.42/515.13/5 Modulus(MPa)1850Ϫ40.81/10Ϫ23.89/10Ϫ46.49/10Ϫ33.19/10 Elongation at break(%) 2.2577.78/586.67/5100/573.33/5 Toughness(MPa)0.4140/5187.5/5162.5/5120/5 Impact strength(10Ϫ2J/mm2) 1.2169.42/5147.93/586.78/561.98/5 Hardness(shore D)88Ϫ5.11/10Ϫ5.68/10Ϫ6.81/10Ϫ4.55/10 Abrasion loss(cc/h)10.15Ϫ16.26/10Ϫ31.03/10Ϫ23.15/10Ϫ7.39/10 Water absorption(%)0.2161.9/1071.43/10100/1038.1/10TABLE IISoxhlet Extraction and Swelling Data–PU Prepolymer(5%)Property UPR PU-HTPB/UPR PU-HTNR/UPR PU-PEG/UPR PU-castor oil/UPRSoluble matter(%)9.02 5.2 4.7 5.80 6.70V p0.920.9520.960.950.942 MODIFICATION OF UNSATURATED POLYESTER RESIN453Hardness and abrasion lossFigure 7indicates a general lowering of surface hard-ness on addition of all types of PU elastomers.This is due to the lower surface hardness values of the PU elastomers.This effect is maximum for PEG and min-imum for castor oil.There is a decrease in abrasion loss on addition of all polyurethane prepolymers (Fig.8),the best results being given by HTNR.The stereo specific cis alkyl chain of HTNR provides an elasti-cally more effective network and the surface cannot be easily abraded.Water absorptionWater absorption of polyurethane-modified resins in-creases with PU concentration (Fig.9).The hydrogen bonding between water and polar urethane linkages enhances the water absorption of cured resin.Table I summarizes the overall effect of adding varying amounts of PU elastomers.The maximum improvement achieved in each property and the cor-responding PU concentrations are tabulated.It is evi-dent that the performance of HTNR is superior to other PU prepolymers considered.Soxhlet extraction and swelling studiesThe Soxhlet extraction data (Table II)show that very little soluble matter could be extracted from PU-mod-ified UPR compared with unmodified UPR.Graft re-actions between PU chain and polyester chains as well as chain extension reactions between the PU prepoly-mers and UPR end groups are responsible for this.Thermal studiesThe TGA curves of UPR and its blends with PU pre-polymers are shown in Figure 10.Copolymers of PU-prepolymers and UPR have marginally better thermal stability compared with UPR as shown in Table III.The DSC curves of UPR and its blends with PU prepolymers are shown in Figure 11.UPR has a T g of 93°C.Reactive blending with 5%HTPB PU prepoly-mers results in a homogeneous HPN with a single T g (97.62°C).Addition of 10%PU prepolymers exhibits heterogeneity with two T g s at 54and 101°C.This shows that there is reduced compatibility at higher percentages of the prepolymer.T g values obtained from DMA-Tan ␦curves (Fig.12)for UPR (92°C)and UPR/5%PU-prepolymers (98°C)are in good agreement with T g values obtained from DSC curves.The tan ␦values at 92°C for these poly-mers are 0.5421and 0.4569,respectively.The marginal lowering in T g may be due to the enhanced flexibility.Spectral studiesComparing the FTIR spectra of UPR and UPR modified by 5%PU prepolymer of HTPB (Fig.13),TABLE IIIThermal Properties of TGAResin Onsettemperature (°C)Temperature of maximum rate (°C)Temperature of half loss (°C)Residue (%)UPR296.88412.53408.980.3327PU-HTNR/UPR 328.28404.18391.24 6.17PU-HTPB/UPR316.45410.77395.905.82Figure 10TGA curves of UPR,5%HTNR-PU/UPR,and 5%HTPB-PU/UPR.Figure 11DSC thermograms of (a)UPR,(b)5%HTPB-PU/UPR,and (c)10%HTPB-PU/UPR.454CHERIAN,ABRAHAM,AND THACHILadditional peaks in (b)at 1700cm Ϫ1and 1528cm Ϫ1are due to N O H stretching and N O H bending vibrations,respectively,of the urethane linkage.Morphological studiesScanning electron micrographs of unmodified and modified UPR fractured at low deformation rate are shown in Figure 14.Referring to the micrograph (a),the fracture path for unmodified resin (UPR)is narrow and continuous,indicating rapid crack propagation along the axis of crack growth.The fracture surface is smooth with low ridges and shallow grooves.But all the fracture surfaces of the blends are characterized by a morphology in which the additive is segregated into spherical-shaped domains.A bimodal distribution of particle size is seen in most cases.Polyurethane with reactive O NCO groups result in grafting,which gives high adhesion.Cavities remain after the rubber parti-cles,have been ejected from the fracture surface.These small PU particles are a result of nucleation and growth type phase transfer.PU-HTNR-modified resin fracture pattern is shown in micrograph (b).The cav-itated rubber particles are filled with an internal void in some cases.Phase-separated morphology and good dispersion of rubber particles are indicated.This leads to high-energy absorption.The micrograph of PU-HTPB-modified resin (c)shows enhanced stress whit-ening.The holes in the stress-whitened regions pre-sumably result from dilation and rupture ofelastomerFigure 12DMA-Tan ␦curves:(a)UPR and (b)5%HTPB-PU/UPR.Figure 13FTIR spectra of UPR and 5%HTPB-PU/UPR.MODIFICATION OF UNSATURATED POLYESTER RESIN 455particles.Most of the large holes,however,contain round inclusions,which are hard.The initiation and growth of voids in the rubbery particles give rise to stress whitening often observed before crack tip and on the fractured surface.These point to high tough-ness and load-bearing characteristics.Referring to PU-PEG-modified resin (d),the fracture surface shows furrows and cavitation.The circular depressions rep-resent the sites of PU domains.Micrograph of PU-castor oil-modified resin (e)shows multiple cracks,stress distribution,localization of stress,and cavita-tion.Increased surface roughness and drawn ridges of polyesters are seen.The cavitated rubber particles are filled with an internal void in some cases.CONCLUSIONSTensile strength,toughness,impact resistance,and elongation-at-break of UPR have increased on incor-poration of PU prepolymers.Unlike rubbers,PU pre-polymers are highly miscible with UPR.Polyurethane prepolymers prepared by reacting HTNR and TDI are found to bequeath superior properties to UPR com-pared with other PU prepolymers considered.In thecase of HTNR-PU prepolymers,the tensile strength of the cured UPR has been found to increase by as much as 20%,simultaneously improving the toughness by about 188%.A single T g is observed for PU prepoly-mer-modified resins,which indicate compatibility and homogeneity.DMA investigations show that the mod-ified samples have lower tan ␦values,indicating greater flexibility and toughness.Hence PU prepoly-mers at low percentages are useful modifiers for UPR.References1.Carothers,W.H.J Am Chem Soc 1929,51,2569.2.Boeing,H.V.Unsaturated Polyester;Elsevier:New York,1964.3.Bryson,J.A.Plastic Materials;Butterworths Heinemann:Ox-ford,1999.4.Mc Garry,F.J.Rubber in Cross-linked Polymers;Applied Sci-ence:London,1983.5.Pavan,A.Reports of the 2nd International Conference SIM-Plastics 79;Warsaw,1979;Vol.1,p 28.6.Keith Riew,C.Rubber Toughened Plastics,Advances in Chem-istry Series 222;American Chemical Society:Washington,DC,1989.7.Suspene,L.;Show,Y.Y.;Jean-Pierre,P.In Rubber Toughened Plastics;Keith Riew,C.;Kinloch,A.J.,Eds.;Advances in Chem-istry series 233;American Chemical Society:Washington,DC,1993.8.Yee,A.F.;Du,J.;Thouless,M.D.Polymer Blends-Performance,Paul,D.R.;Bucknall,C.B.,Eds.;Wiley:New York,1999;Vol.2.9.Rosa,V.M.;Karger-kocsis,J.;Felisberti,M.I.J Appl Polym Sci 2001,81,3280.10.Chiu,H.T.;Chen,S.C.J Polym Res 2001,8,183.11.Gawdzik,B.;Matynia,T.;Chmielewska,E.J Appl Polym Sci2001,82,2003.12.Messori,M.;Toselli,M.;Pilati,F.;Tonelli,C.Polymer 2001,42–25,09877.13.Lin,M.-S.;Chang,R.-J.;Yang,T.;Shih,Y.-F.J Appl Polym Sci1995,55,1607.14.Lin,M.-S.;Liu,C.-C.;Lee,C.-T.J Appl Polym Sci 1997,65,1525.15.Shaker,Z.G.;Browne,R.M.;Stretz,H.A.;Cassidy,P.E.;Blanda,M.T.J Appl Polym Sci 2002,84,2283.16.Mc Garry,F.J.;Rowe,E.H.;Riew,C.K.Polym Eng Sci 1978,18–2.17.Malinconico,M.;Martuscelli,E.;Ragosta,G.;Volpi,M.G.InterJ Polym Mat 1987,11,317.18.Crosbie,G.A.;Phillips,M.G.J Mat Sci 1985,20,18219.Chou,Y.C.;Lee,L.J.Polym Eng Sci 1994,34,1239.20.Chou,Y.C.;Lee,L.J.Polym Eng Sci 1995,35,976.21.Valette,L.;Hsu,C.-P.Polymer 1999,40,2059.22.Xu,M.X.;Xiao,J.S.;Zhang,W.H.;Yao,K.D.J Appl Polym Sci1994,54,1659.23.Srichatrapimuk,V.W.;Cooper,S.L.J Macromol Sci Phys 1978,B15,267.24.Van Bogart,J.W.C.;Lilaonitkul,A.;Cooper,S.L.Adv Chem Ser1979,176,3.25.Frisch,K.C.;Klempner,D.;Frisch,H.L.Polym Eng Sci 1982,22,1143.26.Scarito,P.R.;Sperling,L.H.Polym Eng Sci 1979,19,297.27.Yeo,J.K.;Sperling,L.H.;Thomas,D.A.J Appl Polym Sci 1983,26,3283.28.Ravindran,T.;Nayar,M.R.G.;Francis,D.J.J Appl Polym Sci1988,35,1227.29.Roger Brown,Ed.;Handbook of Polymer Testing;Marcel Deck-er:New York,1999,Chapter13.Figure 14Scanning electron micrographs of fracture sur-faces:(a)UPR,(b)HTNR-PU/UPR,(c)HTPB-PU/UPR,(d)PEG-PU/UPR,and (e)Castor oil-PU/UPR.456CHERIAN,ABRAHAM,AND THACHIL。