初中数学几何 三视图的对应规律
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
中考数学三视图知识点分享
我们为大家收集整理了关于中考数学三视图,以方便大家参考。
能够正确反映物体长、宽、高尺寸的正投影工程图〔主视图,俯视图,左视图三个基本视图〕为三视图,这是工程界一种对物体几何形状约定俗成的抽象表达方式
〔1〕三视图:
是指观测者从三个不同位置观察同一个空间几何体而画出的
图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将
所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。
三视图就是主视图、俯视图、左视图的总称。
〔2〕特点:
一个视图只能反映物体的一个方位的形状,不能完整反映物
体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物
体的结构形状。
三视图是从三个不同方向对同一个物体进行投射
的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
希望大家可以学会中考数学三视图.想了解更多精彩内容,请关注我们的网站!。
备考2020年中考一轮复习点对点必考题型题型02 简单几何体的三视图考点解析1.简单几何体的三视图(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(2)常见的几何体的三视图:圆柱的三视图:2.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.五年中考1.(2019•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.【点拨】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.2.(2018•成都)如图所示的正六棱柱的主视图是( )A.B.C.D.【点拨】根据主视图是从正面看到的图象判定则可.【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.3.(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看一层三个小正方形,故选:C.4.(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解析】解:从上面看易得横着的“”字,故选:C.5.(2015•成都)如图所示的三视图是主视图是( )A.B.C.D.【点拨】根据原图形得出其主视图,解答即可.【解析】解:A、是左视图,错误;B、是主视图,正确;C、是俯视图,错误;D、不是主视图,错误;故选:B.一年模拟1.(2019·锦江一诊)有一透明实物如图,它的主视图是( )A.B.C.D.【点拨】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解析】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.2.(2019·成华一诊)如图所示的几何体,它的左视图是( )A .B .C .D .【点拨】根据左视图即从物体的左面观察得到的视图,进而得出答案.【解析】解:如图所示的几何体的左视图为:.故选:D .3.(2019·武侯一诊)如图所示的支架(一种小零件)的两个台阶的高度和宽度分别相等,则它的主视图为( )A .B .C .D .【点拨】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解析】解:从正面看去,是两个有公共边的矩形,如图所示:故选:D .4.(2019·成华二诊)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个十字,“十”字是中心对称图形,故选:C.5.(2019·青羊一诊)观察下列几何体,主视图、左视图和俯视图都是矩形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:A、主视图为矩形,俯视图为圆,错误;B、主视图为矩形,俯视图为矩形,正确;C、主视图为等腰梯形,俯视图为圆环,错误;D、主视图为三角形,俯视图为有对角线的矩形,错误.故选:B.6.(2019·青羊二诊)图中三视图对应的正三棱柱是( )A.B.C.D.【点拨】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解析】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.7.(2019·武侯二诊)下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.【解析】解:A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选:C.8.(2019·锦江二诊)如图,该立体图形的俯视图是( )A.B.C.D.【点拨】根据几何体的三视图,即可解答.【解析】解:如图所示的立体图形的俯视图是C.故选:C.9.(2019·高新一诊)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.10.(2019·武侯二诊)如图所示的几何体的左视图是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看,得到的视图是A.故选:A.精准预测1.如图所示几何体的左视图正确的是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从几何体的左面看所得到的图形是:故选:A.2.下列立体图形中,主视图是三角形的是( )A.B.C.D.【点拨】根据从正面看得到的图形是主视图,可得图形的主视图.【解析】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.3.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D .【点拨】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B .4.如图所示几何体,从左面看是( )A .B .C .D .【点拨】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.【解析】解:左面位置上下两个正方形,右面的下方一个正方形的图形是.故选:B .5.下列几何体中,从正面看(主视图)是长方形的是( )A .B .C .D .【点拨】主视图是分别从物体正面看,所得到的图形.【解析】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B .6.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有( )A.7盒B.8盒C.9盒D.10盒【点拨】由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,进而求出答案,做出选择.【解析】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.7.如图是由小立方块搭成的几何体,则从左面看到的几何体的形状图是( )A.B.C.D.【点拨】从左面看到的图形是两列,其中第一列有两个正方形,第二列有1个正方形,做出判断即可.【解析】解:从左面正投影所得到的图形为选项B.故选:B.8.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的( )A.左视图会发生改变B.俯视图会发生改变C.主视图会发生改变D.三种视图都会发生改变【点拨】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.10.如图,下列选项中不是正六棱柱三视图的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.11.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A.B.C.D.【点拨】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.12.如图,下列水平放置的几何体中,左视图不是矩形的是( )A.B.C.D.【点拨】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解析】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.13.如图所示的支架是由两个长方体构成的组合体,则它的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:从左边看下边是一个中间为虚线的矩形,故选:A.14.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为( )A.B.C.D.【点拨】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.【解析】解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.15.如图所示的几何体,从上面看得到的图形是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个六边形,中间为圆.故选:D.。
中考数学几何问题备考:三视图的有关概念
为了保证孩子们过一个快乐的空虚的学期,家长冤家们一定要监视孩子们的学习。
查字典数学网为大家提供了中考数学几何效果备考,希望大家仔细阅读。
1、视图
用正投影的方法,把物体轮廓外形向投影面投影所得的图形称为视图。
2、三视图的位置关系
以主视图为准,仰望图在主视图的正下方,左视图在主视图的正右方。
3、三视图的投影关系
a)物体有长、宽、高三个方向的尺寸。
假设把它的左右方向的尺寸称为长,前前方向的尺寸称为宽,上下方的尺寸称为高。
那么主、仰望图都反映物体的长度;主、左视图都反映了物体的高度;俯、左视图都反映了物体的宽度。
b)三视图的投影关系:长对正、高平齐、宽相等。
即主、仰望图长度相等且对正;主、左视图高度相等且平齐;俯、左视图宽度彼此相等。
4、三视图的方位关系
a)主视图反映物体左右、上下方位对应关系,前后那么堆叠;
b)仰望图反映物体左右、前前方位对应关系,上下那么堆叠;
c)左视图反映物体上下、前前方位对应关系,左右那么堆叠。
d)以主视图为准,俯、左视图中接近主视图一侧均表示物体前面,
远离主视图一侧均表示物体前面。
5、画三视图的基本方法
a)确定主视方向。
普通选取最能反映物体外形结构特征的一面作为注释方向。
b)布置视图。
按三视图的位置关系,画各视图的定位线,如中心线或某些边线。
c)普通从主视图画起,按投影规律,再画另两个视图。
d)按线型要求,描粗加深物体轮廓线,完成三视图绘制。
小编为大家提供的中考数学几何效果备考大家细心阅读了吗?最后祝同窗们学习提高。
第二节三视图
要点精讲
1.视图:物体的正投影称为视图,把从物体正面的视图称为主视图,从物体的左侧面得到的视图称为左视图,从物体上面得到的视图称为俯视图,统称三视图。
2.三视图的位置:
俯视图画在主视图的下方,左侧图画在主视图的右面。
3.画三视图的“三等原则”:
(1)主视图与俯视图的长度相等,且相互对正,即“长对正”
(2)主视图与左视图的高度相等,且相互平齐,即“高平齐”
(3)俯视图与左视图的宽度相等,即“宽相等”
4.常见几何体的平面或侧面展开图
①圆柱体的侧面展开图是矩形
②圆锥体的侧面展开图是扇形
③直棱柱的侧面展开图是矩形
④正三棱锥
⑤正方体
⑥长方体
典型例题
1.圆锥体的主视图是,左视图是,俯视图是.【答案】三角形、三角形、圆
2.球的三视图分别是,,.
【答案】圆,圆,圆。
29.2 三视图1.三视图概念:物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影。
如图 (1),我们用三个互相垂直的平面作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等画三视图的注意点:1、画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰。
2、在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
典型例题例1.画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图“长对正”。
3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:例2.画出如图所示的支架(一种小零件)的三视图.分析:支架的形状,由两个大小不等的长方体构俯视图左视图主视图成的组合体.画三视四时要注意这两个长方体的上下、前后位置关系.解:如图29.2-7是支架的三视图例3.右图是一根钢管的直观图,画出它的三视图分析.钢管有内外壁,从一定角度看它时,看不见内壁.为全面地反映立体图形的形状,画图时规定;看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.解:图如图29.2-7是钢管的三视图,其中的虚线表示钢管的内壁.例4.如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。
初一年级奥数知识点:三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。
(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。
在许多情况下,只用一个投影不加任何注解,是不能完整清晰地、表达和确定形体的形状和结构的。
三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。
可见只用一个方向的投影来表达形体形状是不行的。
一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。
练习1.球的三视图是( )A.三个圆B.三个圆且其中一个包括圆心C.两个圆和一个半圆弧D.以上都不对2.若一个几何体的三视图都是正方形,则这个几何体是( )A.长方体B.正方体C.圆柱D.圆锥3.下列命题正确的是( )A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上,得到的光区仍是矩形答案:1.A 2.B 3.C。
2018初中数学几何三视图的对应规律各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了中考五大必考学科的知识点,主要是对初中三年各学科知识点的梳理和细化,帮助各位考生理清知识脉络,熟悉答题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018初中数学几何三视图的对应规律》,仅供参考!三视图之间、形体和三视图之间存在着下列投影规律:1 、三视图间的位置关系俯视图在主视图的正下方,左视图在主视图的正右方。
2、视图之间的对应关系如下图所示。
归纳如下:、每个视图所反映的形体尺寸情况主视图——反映了形体上下方向的高度尺寸和左右方向的长度尺寸。
俯视图——反映了形体左右方向的长度尺寸和前后方向的宽度尺寸。
左视图——反映了形体上下方向的高度尺寸和前后方向的宽度尺寸。
、视图之间的关系根据每个视图所反映的形体的尺寸情况及投影关系,有:主、俯视图中相应投影的长度相等,并且对正;主、左视图中相应投影的高度相等,并且平齐;俯、左视图中相应投影的宽度相等。
这就是我们今后画图或看图中要时刻遵循的“长对正,高平齐,宽相等”规律,需要牢固掌握。
3 、形体与视图的方位关系任何形体在空间都具有上、下、左、右、前、后六个方位,形体在空间的六个方位和三视图所反映形体的方位如下图所示。
主视图——反映了形体的上、下和左、右方位关系;俯视图——反映了形体的左、右和前、后方位关系;左视图——反映了形体的上、下和前、后位置关系。
比较形体与视图,可以看出:主视图的上、下、左、右方位与形体的上、下、左、右方位一致;俯视图的左、右方位与形体的左、右方位一致,而俯视图的上方反映的是形体的后方,俯视图的下方反映的是形体的前方;左视图的上、下方位与形体的上、下方位一致,而左视图的左方反映的是形体的后方,左视图的右方反映的是形体的前方。
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
九年级下册数学三视图计算知识点九年级下册数学课程中,学生将接触到三视图计算这一知识点。
三视图计算是一种常用的图形分析方法,通过观察物体的三个相互垂直的视图,即前视图、俯视图和侧视图,来推断物体的外形和尺寸。
本文将探讨三视图计算的基本原理、应用场景以及解题技巧。
首先,让我们了解一下三视图计算的基本原理。
在三视图中,前视图是物体的正面视图,俯视图是物体的顶视图,侧视图是物体的侧面视图。
通过观察这三个视图,我们可以获得关于物体的信息,如物体的长度、高度和宽度等。
同时,三视图也可以帮助我们理解物体的空间结构和形状。
例如,通过观察前视图和侧视图,我们可以判断物体是否对称,并且可以确定物体的轴线。
三视图计算在很多实际生活中都有应用。
一种典型的应用场景是在建筑设计中。
建筑师通常会使用三视图计算来确定建筑物的外形和尺寸。
通过前视图、侧视图和俯视图,建筑师可以推断出房子的高度、宽度以及各个房间的尺寸。
另一个应用场景是在工程绘图中。
工程师需要使用三视图计算来绘制机械设备的图纸,以便于工程制造和安装。
通过观察三视图,工程师可以获知机械零件的形状和位置,从而保证工程的准确性和合理性。
在解决三视图计算的问题时,有一些技巧和方法可以帮助我们更好地理解和分析问题。
首先,我们可以通过观察三个视图之间的关系来推断物体的各个方向上的长度。
例如,如果在前视图中一个线段的长度为2厘米,在俯视图中的对应线段的长度也是2厘米,那么我们可以判断这个线段垂直于观察者,与俯视图平行。
其次,我们可以通过观察三视图中的重合部分来判断物体的空间结构和形状。
如果在三个视图中,一个线段、一个面或一个点都重叠在同一个位置,那么我们可以判断这部分是物体的公用部分。
最后,我们可以根据已知的信息去推断未知的尺寸。
通过在三视图中综合运用已知的线段长度、角度以及各个视图之间的关系,我们可以计算出未知的尺寸。
除了上述的基本原理和解题技巧外,还有其他一些知识点也与三视图计算相关。
初中数学几何问题备考:三视图的有关概念
主要内容
1、视图
用正投影的方法,把物体轮廓外形向投影面投影所得的图形称为视图。
2、三视图的位置关系
以主视图为准,仰望图在主视图的正下方,左视图在主视图的正右方。
3、三视图的投影关系
a)物体有长、宽、高三个方向的尺寸。
假设把它的左右方向的尺寸称为长,前前方向的尺寸称为宽,上下方的尺寸称为高。
那么主、仰望图都反映物体的长度;主、左视图都反映了物体的高度;俯、左视图都反映了物体的宽度。
b)三视图的投影关系:长对正、高平齐、宽相等。
即主、仰望图长度相等且对正;主、左视图高度相等且平齐;俯、左视图宽度彼此相等。
4、三视图的方位关系
a)主视图反映物体左右、上下方位对应关系,前后那么堆叠;
b)仰望图反映物体左右、前前方位对应关系,上下那么堆叠;
c)左视图反映物体上下、前前方位对应关系,左右那么堆叠。
d)以主视图为准,俯、左视图中接近主视图一侧均表示物体前面,
远离主视图一侧均表示物体前面。
5、画三视图的基本方法
a)确定主视方向。
普通选取最能反映物体外形结构特征的一面作为注释方向。
b)布置视图。
按三视图的位置关系,画各视图的定位线,如中心线或某些边线。
c)普通从主视图画起,按投影规律,再画另两个视图。
d)按线型要求,描粗加深物体轮廓线,完成三视图绘制。
初中数学几何三视图的对应规律三视图之间、形体和三视图之间存在着下列投影规律:1 、三视图间的位置关系俯视图在主视图的正下方,左视图在主视图的正右方初二。
2、视图之间的对应关系如下图所示。
归纳如下:(1)、每个视图所反映的形体尺寸情况主视图——反映了形体上下方向的高度尺寸和左右方向的长度尺寸。
俯视图——反映了形体左右方向的长度尺寸和前后方向的宽度尺寸。
左视图——反映了形体上下方向的高度尺寸和前后方向的宽度尺寸。
(2)、视图之间的关系根据每个视图所反映的形体的尺寸情况及投影关系,有:主、俯视图中相应投影 ( 整体或局部 ) 的长度相等,并且对正;主、左视图中相应投影 ( 整体或局部 ) 的高度相等,并且平齐;俯、左视图中相应投影 ( 整体或局部 ) 的宽度相等。
这就是我们今后画图或看图中要时刻遵循的“长对正,高平齐,宽相等”规律,需要牢固掌握。
3 、形体与视图的方位关系任何形体在空间都具有上、下、左、右、前、后六个方位,形体在空间的六个方位和三视图所反映形体的方位如下图所示。
主视图——反映了形体的上、下和左、右方位关系;俯视图——反映了形体的左、右和前、后方位关系;左视图——反映了形体的上、下和前、后位置关系。
比较形体与视图,可以看出:(1 )主视图的上、下、左、右方位与形体的上、下、左、右方位
一致;(2 )俯视图的左、右方位与形体的左、右方位一致,而俯视图的上方反映的是形体的后方,俯视图的下方反映的是形体的前方;(3 )左视图的上、下方位与形体的上、下方位一致,而左视图的左方反映的是形体的后方,左视图的右方反映的是形体的前方。