第三章 应力分析与应变分析
- 格式:ppt
- 大小:3.71 MB
- 文档页数:48
工程力学中的应力与应变分析方法探讨在工程力学中,应力与应变是研究材料和结构力学性能的重要概念。
应力是指单位面积内的力的大小,而应变则是指材料的形变程度。
应力与应变的分析方法是工程力学中的核心内容之一,本文将对工程力学中的应力与应变分析方法进行探讨。
一、应力分析方法在工程力学中,常用的应力分析方法有静力学方法、接触力学方法和弹性力学方法。
静力学方法是通过平衡方程分析物体所受到的力,并计算得出应力分布情况;接触力学方法则是研究物体间的接触行为,通过接触区域的应力分布来分析力的传递情况;弹性力学方法则是应用弹性力学原理,通过杨氏模量和泊松比等参数计算得出应力分布情况。
静力学方法是应力分析中最基本的方法之一,它基于物体所受到的力的平衡条件进行分析。
静力学方法分为静力学平衡和弹性力学平衡两种情况。
静力学平衡是指物体在外力作用下不发生形变,通过将物体分解为若干个力的平衡条件方程来求解各个部位的应力;而弹性力学平衡则是物体在外力作用下发生形变,通过应力-应变关系来求解应力分布情况。
静力学方法在工程力学中应用广泛,可以分析各种载荷下的应力情况。
接触力学方法是研究物体与物体之间接触行为的力学方法,通过分析接触面的应力分布来推导出力的传递情况。
在实际工程应用中,接触力学方法广泛用于轴承、齿轮、摩擦等接触问题的分析与设计。
接触力学方法主要利用弹性力学和接触力学理论,通过建立接触面的几何模型和接触条件,求解接触区域的应力分布。
弹性力学方法是应力分析中最常用的方法之一,它基于弹性力学理论,通过材料的弹性参数计算得出应力分布。
弹性力学方法广泛应用于材料和结构强度分析中。
弹性力学方法主要使用线弹性理论,通过杨氏模量和泊松比等参数来描述材料的弹性性能,根据应力-应变关系计算得出应力分布情况。
二、应变分析方法在工程力学中,常用的应变分析方法有光栅衍射法、电测法和应变计法。
光栅衍射法是利用光学原理来测量物体表面的应变分布情况,通过测量光栅的位移来计算应变大小;电测法则是利用电阻应变片等设备来测量物体表面的应变分布情况;应变计法则是通过安装应变计来测量物体表面的应变分布情况。
工程力学中的应力和应变的分析工程力学是研究物体在外力作用下受力与变形规律的学科。
在工程力学中,应力和应变是两个重要的概念,用于描述物体受到外力作用后的力学响应和变形情况。
本文将对工程力学中的应力和应变进行深入的分析和探讨。
一、应力的概念和分类应力是描述物体单位面积内的内力或外力的物理量,用σ表示。
在力的作用下,物体的形状、大小和方向都会发生变化,而应力则用来描述物体内部各点受力状态的大小和方向。
应力可以分为正应力和剪应力两种类型。
1. 正应力:正应力是指垂直于物体截面的力在该截面上的作用效果。
正应力可分为拉应力和压应力两种情况。
拉应力是指垂直于物体截面的力使得截面上的物质向外扩张,压应力则是指垂直于物体截面的力使得截面上的物质向内收缩。
2. 剪应力:剪应力是指与物体截面平行的力在该截面上的作用效果。
剪应力是由于物体受到外部力的平行作用而引起的变形。
剪应力会使得物体的截面发生平行于力的方向的切变变形。
二、应变的概念和分类应变是描述物体相对于原始形状发生变形时各点之间相对位置的改变程度的物理量,用ε表示。
应变描述了物体受到外力作用后的变形程度和特征。
应变可分为线性应变和剪切应变两种类型。
1. 线性应变:线性应变是一种改变物体长度的应变形式,也称为伸长应变。
线性应变正比于物体所受力的大小,并与物体原始长度之比成正比。
线性应变的表达式为ε = ΔL / L0,其中ΔL为线段在力作用下伸长的长度,L0为线段的原始长度。
2. 剪切应变:剪切应变是一种改变物体形状的应变形式,也称为变形应变。
剪切应变是与物体所受剪力大小成正比,与物体的长度无关。
剪切应变的表达式为γ = Δx / h,其中Δx为剪切前后平行于力方向的线段之间的位移,h为物体在该方向上的高度。
三、应力和应变之间的关系应力和应变之间存在一定的关系,通常可以通过弹性模量来表示。
弹性模量是描述物体材料抵抗形变能力的物理量,用E表示。
主要用于刻画物体在受力作用后,恢复原始形状的能力。
§3-3机械零件的应力应变分析一、拉(压)杆应力应变分析(一)应力分析前面应用截面法,可以求得任意截面上内力的总和,现在进一步分析横截面上的应力情况,首先研究该截面上的内力分布规律,内力是由于杆受外力后产生变形而引起的,我们首先通过实验观察杆受力后的变形现象,并根据现象做出假设和推论;然后进行理论分析,得出截面上的内力分布规律,最后确定应力的大小和方向。
现取一等直杆,拉压变形前在其表面上画垂直于杆轴的直线和(图3-28)。
拉伸变形后,发现和仍为直线,且仍垂直于轴线,只是分别平行地移动至和。
于是,我们可以作出如下假设:直杆在轴向拉压时横截面仍保持为平面。
根据这个“平面假设”可知,杆件在它的任意两个横截面之间的伸长变形是均匀的。
又因材料是均匀连续的,所以杆件横截面上的内力是均匀分布的,即在横截面上各点处的正应力都相等。
若杆的轴力为,横截面积为,,于是得:???????????????????????? (3-2)这就是拉杆横截面上正应力的计算公式。
当为压力时,它同样可用于压应力计算。
规定拉应力为正,压应力为负。
例3-3? 图3-29(a)为一变截面拉压杆件,其受力情况如图示,试确定其危险截面。
解? 运用截面法求各段内力,作轴力图[图3-29(b)]:段:????????? 段:段:???????? 段:根据内力计算应力,则得:段:????????? 段:段:最大应力所在的截面称为危险截面。
由计算可知,段和段为危险截面。
(二)、拉(压)杆的变形杆件受轴向拉力时,纵向尺寸要伸长,而横向尺寸将缩小;当受轴向压力时,则纵向尺寸要缩短,而横向尺寸将增大。
设拉杆原长为,横截面面积为(图3-30)。
在轴向拉力P作用下,长度由变为,杆件在轴线方向的伸长为, 。
实验表明,工程上使用的大多数材料都有一个弹性阶段,在此阶段范围内,轴向拉压杆件的伸长或缩短量,与轴力和杆长成正比,与横截面积成反比。
即,引入比例常数则得到:??????????????????? (3-3)这就是计算拉伸(或压缩)变形的公式,称为胡克定律。
第三章杆件横截面上的应力应变分析利用截面法可以确定静定问题中的杆件横截面上的内力分量,但内力分量只是横截面上连续分布内力系的简化结果,仅根据内力并不能判断杆件是否有足够的强度。
如用同一种材料制成粗细不同的两根杆,在相同的拉力作用下,两杆的轴力是相同的,当拉力增大时,细杆必定先被拉断。
这说明拉杆的强度不仅与轴力大小有关,还与横截面面积有关,因此还必须引入内力集度的概,即应力的概念。
本章在此基础上分别讨论了杆件在拉压、扭转和弯曲三种基本变形和组合变形下横截面上应力的分布规律,导出了应力计算公式,为后面对杆件进行强度计算打下了基础。
第一节应力、应变及其相互关系一、正应力、剪应力观察图3-1a所示受力杆件,在截面上围绕K点取微小面积,其上作用有微内力,于是在上内力的平均集度为:(3-1)亦称为面积上的平均应力。
一般来说截面上的内力并不均匀分布,因此平均应力随所取ΔA的不同而变化。
当ΔA趋向于零时,的大小方向都将逐渐趋于某一极限。
(3-2)式中,p称为K点的应力,它反映内力系在K点的强弱程度。
p是一个矢量,一般说既不与截面垂直,也不与截面相切。
通常将其分解为垂直于截面的应力分量和相切于截面的应力分量(图3-1b)。
称为正应力,称为切应力。
在国际单位制中,应力的单位是牛顿/米2(N/M2),称为帕斯卡,简称帕(Pa)。
由于这个单位太小,通常使用兆帕(MPa),1MPa = 106Pa。
二、正应变、切应变杆件在外力作用下,其尺寸或几何形状将发生变化。
若围绕受力弹性体中任意点截取一个微小正六面体(当六面体的边长趋于无限小时称为单元体),六面体的棱边边长分别为Δx 、Δy 、Δz (图3-2 )。
把该六面体投影到xy平面(图3-2b)。
变形后,六面体的边长和棱边夹角都将发生变化(图3-2c)。
变形前长为Δx的线段MN,变形后长度为Δx+Δs。
相对变形(3-3)表示线段MN单位长度的平均伸长或缩短,称为平均应变。
当Δx趋向于零,即点N趋向于M点时,其极限为(3-4)式中,ε称为M点沿x方向的线应变或正应变,ε为无量纲量。
应力分析与应变分析概述应力分析和应变分析是材料力学与结构设计中重要的分析方法。
通过研究材料内部的应力和应变分布情况,可以评估材料的强度和稳定性,为结构设计提供依据。
本文将介绍应力分析和应变分析的基本概念、方法和应用领域。
应力分析应力的概念应力是材料内部的内力状态,是材料中单元体受到的单位面积上的力的大小。
常见的应力类型有正应力、剪切应力和法向应力。
正应力指的是垂直于面元的力,剪切应力指的是在面元平面上的切应力,法向应力是正应力的一种特殊情况。
应力分布材料内部的应力分布可以通过应力场来描述。
应力场是指空间中各点的应力分布情况。
常见的应力场模型包括均匀应力场、线性应力场和非线性应力场。
弹性力学弹性力学是研究材料受力后的变形和应力恢复的一门学科。
通过弹性力学理论,可以计算材料在受力后的应力分布和变形情况。
应力分析的应用应力分析在工程领域有广泛的应用。
例如,在结构设计中,可以通过应力分析来评估结构的强度和稳定性,确定合理的结构形式和尺寸。
此外,应力分析也用于材料疲劳寿命预测、断裂力学研究等领域。
应变分析应变的概念应变是材料内部形变程度的度量,是材料内部单位长度的变化量。
常见的应变类型有线性应变、剪切应变和体积应变。
线性应变指的是材料在受力后的线性变形;剪切应变是材料在受到切应力作用时沿切应力方向发生的形变;体积应变是材料在受力后发生的体积变化。
应变分布类似于应力分布,应变分布可以通过应变场来描述。
应变场是指空间中各点的应变分布情况。
应变分析的方法应变分析的常用方法包括拉伸试验、剪切试验、压缩试验和扭转试验等。
通过这些试验可以获取材料在不同受力状态下的应变数据,进而进行应变分析。
应变测量应变测量是应变分析中的重要环节。
常用的应变测量方法有电阻式应变计、光栅应变计和激光测量等。
这些方法可以准确地获取材料受力后的应变数据,并用于应变分析和应变场重构。
应变分析的应用应变分析在材料研究和工程设计中起着重要的作用。