应力和应变分析强度理论
- 格式:ppt
- 大小:2.14 MB
- 文档页数:125
第九章 应力、应变分析、强度理论一、是非题9-1、单元体最大正应力面上的剪应力恒等于零。
( )9-2、单元体最大剪应力面上的正应力恒等于零。
( )9-3、依照剪应力互等定理,一单元体中两个平面上的剪应力数值相等,符号相反,则这两平面必定相互垂直。
( )9-4、 只要构件横截面上的轴力N=0,则该横截面正应力处处为零。
( )9-5、 梁受横力弯曲时,其横截面上各点处的主应力必定是σ1≥0,σ3≤0。
( )9-6、 等截面圆杆受纯扭转时,杆内任一点处只有剪应力,而无正应力。
( )9-7、若受力构件中一点处,某方向上的线应变为零,则该方向上的正应力必为零。
( )9-8、若受力钢质构件中的一点处,某相互垂直方向的剪应变为零,则该方向上的剪应力必为零。
( ) 9-9、若各向同性材料单元体的三个正应力σx >σy >σz ,则对应的三个线应变也有εx >εy >εz 。
( ) 9-10、 各向同性单元体的三个主应变为ε1≠0,ε2≠0,ε3=0,若(1)、当ε1>0,则必有σ1>0;( )(2)、当ε1>ε2,则必有σ1>σ2;( )(3)、当ε1>ε2>0,则()()21max 12εεμτ-+=E 。
( ) 9-11、各向同性材料在三向均匀压缩或拉伸时,其形状改变比能恒等于零。
( )二、选择题9-12、单元体应力状态如图9-1所示,由x 轴至σ1方向的夹角为( )。
A 、+13.5°;B 、-76.5°;C 、+76.5°;D 、-13.5°。
9-13、 若已知σ1=5MP a ,则另一个主应力为( )。
A 、σ2=-85MP a ;B 、σ3=-85MP a ;C 、σ2=75MP a ;D 、σ3=-75MP a 。
9-14、 三种应力状态分别如图9-2a 、b 、c 所示,则三者间的关系为( )。
A 、完全等价;B 、完全不等价;C 、(b )和(c )等价;D 、(a )和(c )等价。
工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
(2)、第二理论的应用和局限应用:脆性材料的二向应力状态且压应力很大的情况。
本章应力和应变分析与强度理论的知识结构框图本章应力和应变分析与强度理论重点、难点、考点本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。
能够用广义胡克定律求解应力和应变关系。
理解强度理论的概念,能够按材料可能发生的破坏形式,选择适当的强度理论。
难点主要有 ① 主平面方位的判断。
当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。
还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。
② 最大切应力。
无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =ατα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。
面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。
本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。
② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。
会计算任意斜截面上的应力分量。
③ 计算单元体的最大切应力。
④ 广义胡克定律的应用。
⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。
本章应力和应变分析与强度理论的习题分类及解题要点:本章习题大致可分为四类:( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。
特别是当单元体包括构件表面(自由面)时,其上应力分量为零。
( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。