期权定价公式
- 格式:ppt
- 大小:369.00 KB
- 文档页数:18
bs模型定价公式一、布莱克 - 斯科尔斯(Black - Scholes,BS)模型定价公式概述。
1. 公式的基本形式。
- 对于欧式看涨期权的定价公式:C = S_0N(d_1)-Ke^-rtN(d_2)- 对于欧式看跌期权的定价公式:P = Ke^-rtN( - d_2)-S_0N( - d_1)- 其中:- S_0是标的资产的当前价格。
- K是期权的执行价格。
- r是无风险利率(连续复利)。
- t是期权的到期时间(以年为单位)。
- σ是标的资产价格的波动率。
- N(x)是标准正态分布的累积分布函数,x = d_1或者d_2。
- d_1=frac{ln(S_0 / K)+(r+frac{σ^2}{2})t}{σ√(t)}- d_2 = d_1-σ√(t)2. 公式中各参数的意义。
- 标的资产当前价格S_0- 这是在当前时刻标的资产(如股票、期货等)的市场价格。
它是确定期权价值的基础,如果标的资产价格上涨,看涨期权价值可能增加,看跌期权价值可能减少(在其他条件不变的情况下)。
- 执行价格K- 是期权合约中规定的,在到期日时可以按照该价格买入(对于看涨期权)或卖出(对于看跌期权)标的资产的价格。
执行价格与标的资产当前价格的相对关系对期权价值有重要影响。
当S_0> K(对于看涨期权)时,期权处于实值状态,有更大的内在价值。
- 无风险利率r- 无风险利率反映了资金的时间价值。
在BS模型中,无风险利率越高,执行价格的现值Ke^-rt越低,对于看涨期权价值有正向影响,对看跌期权价值有反向影响(因为看涨期权持有者希望以更低的现值购买资产,而看跌期权持有者希望以更高的现值出售资产)。
- 到期时间t- 期权距离到期日的剩余时间。
一般来说,到期时间越长,期权的价值越高(在其他条件不变的情况下)。
对于看涨期权,较长的到期时间给予标的资产更多的时间上涨超过执行价格;对于看跌期权,给予更多时间下跌低于执行价格。
- 标的资产价格的波动率σ- 波动率衡量了标的资产价格的波动程度。
二、期权价值评估的方法(一)期权估价原理1、复制原理基本思想复制原理的基本思想是:构造一个股票和贷款的适当组合,使得无论股价如何变动投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。
基本公式每份期权价格(买价)=借钱买若干股股票的投资支出=购买股票支出-借款额计算步骤(1)确定可能的到期日股票价格Su和Sd上行股价Su=股票现价S×上行乘数u下行股价Sd=股票现价S×下行乘数d(2)根据执行价格计算确定到期日期权价值Cu和Cd:股价上行时期权到期日价值Cu=上行股价-执行价格股价下行时期权到期日价值Cd=0(3)计算套期保值率:套期保值比率H=期权价值变化/股价变化=(CU-Cd)/(SU-Sd)(4)计算投资组合的成本(期权价值)=购买股票支出-借款数额购买股票支出=套期保值率×股票现价=H×S0借款数额=价格下行时股票收入的现值=(到期日下行股价×套期保值率)/(1+r)= H×Sd/(1+r)2、风险中性原理基本思想假设投资者对待风险的态度是中性的,所有证券的预期收益率都应当是无风险利率;假设股票不派发红利,股票价格的上升百分比就是股票投资的收益率。
因此:期望报酬率(无风险收益率)=(上行概率×股价上升时股价变动百分比)+(下行概率×股价下降时股价变动百分比)=p×股价上升时股价变动百分比+(1-p)×股价下降时股价变动百分比计算步骤(1)确定可能的到期日股票价格Su和Sd(同复制原理)(2)根据执行价格计算确定到期日期权价值Cu和Cd(同复制原理)(3)计算上行概率和下行概率期望报酬率=(上行概率×股价上升百分比)+(下行概率×股价下降百分比)(4)计算期权价值期权价值=(上行概率×Cu+下行概率×Cd)/(1+r)(二)二叉树期权定价模型1、单期二叉树定价模型基本原理风险中性原理的应用计算公式(1)教材公式期权价格=U=股价上行乘数=1+股价上升百分比d=股价下行乘数=1-股价下降百分比(2)理解公式:(与风险中性原理完全一样)2、两期二叉树模型基本原理把到期时间分成两期,由单期模型向两期模型的扩展,实际上就是单期模型的两次应用。
期权平价公式:
C+ Ke^(-rT)=P+S
认购期权价格C与行权价K的现值之和等于认沽期权的价格P加上标的证券现价S
Ke^(-rT):K乘以e的-rT次方,也就是K的现值。
e 的-rT次方是连续复利的折现系数。
也可用exp(-rT)表示贴现因子。
根据无套利原则推导:
构造两个投资组合。
1.看涨期权C,行权价K,距离到期时间T。
现金账户Ke^(-rT),利率r,期权到期时恰好变成行权价K。
2.看跌期权P,行权价K,距离到期时间T。
标的物股票,现价S。
看到期时这两个投资组合的情况。
1.股价St大于K:投资组合1,行使看涨期权C,花掉现金账户K,买入标的物股票,股价为St。
投资组合2,放弃行使看跌期权,持有股票,股价为St。
2.股价St小于K:投资组合1,放弃行使看涨期权,持有现金K。
投资组合2,行使看跌期权,卖出标的物股票,得到现金K
3.股价等于K:两个期权都不行权,投资组合1现金K,
买
卖出买入
S K C P 买
出
买入
S K C
P 行权价K 低于现
行权价K 高于现投资组合2股票价格等于K 。
从上面的讨论我们可以看到,无论股价如何变化,到期时两个投资组合的价值一定相等,所以他们的现值也一定相等。
根据无套利原则,两个价值相等的投资组合价格一定相等。
所以我们可以得到C+Ke^(-rT)=P+S 。
换一种思路理解:C- P = S- Ke^(-rT)
认购期权价格C 与认沽期权的价格P 的差等于证券现价与行权价K 现值的差。
Black-Scholes 期权定价模型一、Black-Scholes 期权定价模型的假设条件Black-Scholes 期权定价模型的七个假设条件如下:1. 风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。
S 遵循几何布朗运动,即dz dt SdS σμ+=。
其中,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率,σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。
μ和σ都是已知的。
简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移项,可以被看成一个总体的变化趋势;二是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。
2.没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。
3. 资产价格的变动是连续而均匀的,不存在突然的跳跃。
4. 该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。
5. 在期权有效期内,无风险利率r 保持不变,投资者可以此利率无限制地进行借贷。
6.在衍生品有效期间,股票不支付股利。
7.所有无风险套利机会均被消除。
二、Black-Scholes 期权定价模型(一)B-S 期权定价公式在上述假设条件的基础上,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的Black-Schole 微分方程:rf Sf S S f rS t f =∂∂+∂∂+∂∂222221σ 其中f 为期权价格,其他参数符号的意义同前。
通过这个微分方程,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---=其中,t T d tT t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln())(2/()/ln(c 为无收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。
期权定价公式期权定价公式是:期权价格=内在价值+时间价值。
期权定价模型,由布莱克与斯科尔斯在20世纪70年代提出。
该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。
模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,其高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
简单期权定价模型。
我们把股价随机末态简化为两个等效的等概率量子态,要么50%的概率上涨到+1X的右边一个标准差处,要么50%的概率下跌到-1X的左边一个标准差处。
显然,对于认购期权,在-1X末态的行权收益是0;在+1X末态的行权收益是S*(1+σ)-K。
其中S是当前(初态)股价,K是到期日的行权价。
根据初态=末态期望值的原理,认购期权价格C=0.5*0+0.5*[S*(1+σ)-K]= 0.5*[S*(1+σ)-K]。
这对于平值和浅度虚值期权是适用的。
对于平值期权K=S,C=0.5*S*σ。
比如,当前股价S=3.3元,月波动率为σ=6%,那么行权价K=3.3元,剩余T=30天期限的平值认购期权价格就是,C=0.5*3.3*6%=0.0990元。
对于深度实值期权,当股价末态为-1X处,仍然会有行权收益。
所以,认购期权价格C=0.5*[S*(1-σ)-K]+0.5*[S*(1+σ)-K]=S-K。
比方说,对于深度实值期权实三K=3.0元,当股价从当前价S=3.3元下跌至末态(-1X处)ST=3.1元,仍然会有3.1-3.0=0.1元的行权收益。
所以,实三期权价格C=S-K=3.3-3.0=0.3元。