金融工程_第11章_期权定价的BS公式
- 格式:ppt
- 大小:4.71 MB
- 文档页数:44
BS模型知识点总结BS模型的主要假设是市场上不存在套利机会,证券价格服从对数正态分布,无风险利率和证券价格的波动率是已知的且恒定的。
在这些假设下,BS模型提供了一种确定期权价格的数学方法,以及为了对冲风险和进行套利交易而构建的策略。
BS模型对期权价格的影响因素包括标的资产价格、期权执行价格、无风险利率、标的资产价格的波动率和期权到期时间。
BS模型的主要公式如下:C = S0N(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - S0N(-d1)其中,C表示欧式看涨期权的价格,P表示欧式看跌期权的价格,S0表示标的资产的当前价格,X表示期权的执行价格,r表示无风险利率,t表示期权到期时间,N(d1)和N(d2)表示标准正态分布的累积分布函数,d1和d2分别表示:d1 = (ln(S0/X) + (r + 0.5*σ^2)*t) / (σ*√t)d2 = d1 - σ*√t其中,σ表示标的资产价格的波动率。
BS模型的知识点总结:1. BS模型的假设:BS模型的有效运用建立在一系列假设的基础上,包括市场上不存在套利机会、证券价格服从对数正态分布、无风险利率和证券价格的波动率是已知的且恒定的等。
2. 期权价格与影响因素:BS模型对期权价格的影响因素主要包括标的资产价格、期权执行价格、无风险利率、标的资产价格的波动率和期权到期时间。
这些因素的变动会直接影响期权价格的变化。
3. BS模型的主要公式:BS模型的主要公式包括欧式看涨期权和欧式看跌期权的定价公式。
根据这两个公式,投资者可以根据期权的相关参数计算出期权的价格。
4. 期权的对冲和套利策略:BS模型不仅提供了期权价格的计算公式,还为投资者提供了对冲和套利的策略。
通过对冲风险,投资者可以降低风险,并能够利用套利机会来获取收益。
5. BS模型的局限性:虽然BS模型在期权定价领域有着广泛的应用,但它也存在一些局限性。
例如,BS模型的假设可能无法完全适用于市场实际的情况,导致模型的预测不准确;此外,BS模型对于美式期权的定价并不适用。
BS期权公式
bs期权定价公式为:C=S·N(d1)-X·exp(-r·T)·N(d2)其中:d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第1点,这个模型中五风险利率必须是连续复利形式,一个简单的或不连续的无风险利率一般是一年计息一次,而r要求为连续复利利率。
r0必须转化为r方能代入上式计算。
两者换算关系为:r=LN (1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用
r0=0.06计算的答案一致。
第2点,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。
如果期权有效期为100天,则T=100/365=0.274.。
Black-Scholes期权定价模型(重定向自Black—Scholes公式)Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型Black-Scholes 期权定价模型概述1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表。
所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。
默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
[编辑]B-S期权定价模型(以下简称B-S模型)及其假设条件[编辑](一)B-S模型有7个重要的假设1、股票价格行为服从对数正态分布模式;2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);5、该期权是欧式期权,即在期权到期前不可实施。
6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。
期权定价公式完全指南对bs模型的介绍下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!期权定价公式完全指南对BS模型的介绍引言期权定价是金融领域中的重要议题,它涉及了如何确定未来某一时间点内购买或出售资产的权利的价格。