简易方程的解法(归纳)
- 格式:doc
- 大小:47.50 KB
- 文档页数:5
一元四次方程的简易解法1 一元四次方程一元四次方程是指其根式仅含一个未知数的四次多项式方程,可用来表示多种物理现象。
它的求解法有多种,如完全分式、旋转方程、因式分解的方法等,下面简单介绍其中一种——完全分式的求解方法。
2 完全分式的求解方法完全分式法是根据四次多项式设立的等价完全分式来破解的一种方法,它要求认识多项式的分式解,大体上可分为两类:一是二项式分式解,二是特殊二次分式解。
首先,将给出的四次多项式按次数划分为不同项,例如:将$ax^4+bx^3+cx^2+dx+e$拆解为$ax^4+bx^3+cx^2+dx+e=A(x-n_1)(x-n_2)(x-n_3)(x-n_4)$,其中,A为比系数,$n_1, n_2, n_3, n_4$为多项式的根。
其次,分解四次同类多项式,即两边各分解成一样的分解过后的乘积,让等号两边的因式一一对应,全部求出,从而求出根$n_1, n_2, n_3, n_4$。
最后,确定多项式的特点,即求出多项式根的绝对值,此方法可表示多项式在x轴上分布的特点,从而确定x轴上根式表达式各因式正负。
3 求解步骤因此,求解一元四次方程的全部步骤如下:(1)将四次多项式转换成等价的完全分式;(2)利用完全分式将双边同时分解;(3)将乘积拆解成相互对应的因式,求出多项式的根$n_1, n_2, n_3, n_4$;(4)根据求出的根的绝对值确定多项式的特点,从而确定乘积中每一项的系数正负。
4 总结最终,通过完全分式的方法,我们可以求出一元四次方程的根,这一方法虽然比较复杂,但是一旦掌握了,就会发现其实比较容易理解,有助于我们更好地理解四次多项式方程,掌握数学现象。
小学数学人教新版五年级上册实用资料
第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2读作a的平方。
注: 2a表示a+a ; a2表示a×a
3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
7、10个数量关系式:
@ 加法;
和=加数+加数;一个加数=和-两一个加数@ 减法:
差=被减数-减数;被减数=差+减数;
减数=被减数-差
@乘法:
积=因数×因数;
一个因数=积÷另一个因数@ 除法:
商=被除数÷除数;被除数=商×除数;
除数=被除数÷商。
简易方程复习资料1.简易方程概念:(1)含有未知数的(2)等式是方程。
2.计算方法口诀:拿到方程仔细看,能计算的先计算,除去加数用减法,除去减数用加法,除去因数用除法,除去除数用乘法。
3.典型例题:形如x+a=b或者x-a=b的方程解法(除去加数用减法,除去减数用加法)例1.解方程x+8=11 解方程x-3.5=8.3解:X+8-8=11-8 解:x-3.5+3.5=8.3+3.5X=3 x=11.8练习x-3.2x4.3=2.5 x+3.7=6.4 x-4.5÷1.5=2 x+8.4x3.3=30形如a-x=b或者ab-x=c的方程解法(先转化成形如x+a=b或者x-a=b 的方程)例2.解方程8-x=3 3x4-x=8 39÷3-x=4.5 解:8-x+x=3+x 解:12-x=8 解:13-x=4.5 3+x=8 12-x+x=8+x 13-x+x=4.5+x3+x-3=8-3 8+x=12 4.5+x=13X=5 8+x-8=12-8 4.5+x-4.5=13-4.5X=4 x=8.5练习6x8-x=23.5 83-x=55 5.6÷1.4-x=2.7 6.5x2.1-x=6形如ax+b=c 或者ax-b=c的方程解法(先除去加数或减数,再除去因数)例3.解方程3x-15=120 解方程4x+2=13.5 解方程3x-8x4=16 解:3x-15+15=120+15 解:4x+2-2=11.5+2 解:3x-32=163x=135 4x=11.5 3x-32+32=16+323x÷3=135÷3 4x÷4=11.5÷4 3x=48X=45 x=2.8753x÷3=48÷3X=16 练习4.8x-5.6=6.4 2.7x+2.4=10.5 7.8x-3.4=12.2 3x+5.5=9.1形如b-ax=c 或者bc-ax=d的方程解法(先转化成形如ax+b=c 或者ax-b=c的方程,再计算)例4. 解方程7.8-2.5x=1.8 解方程3.8x5.5-4.2x=4.1 解:7.8-2.5x+2.5x=1.8+2.5x 解: 20.9-4.2x=4.11.8+2.5x=7.8 20.9-4.2x+4.2x=4.1+4.2x1.8+2.5x-1.8=7.8-1.8 4.1+4.2x=20.92.5x=6 4.1+4.2x-4.1=20.9-4.12.5x÷2.5=6÷2.5 4.2x=16.8X=2.4 4.2x÷4.2=16.8÷4.2X=4练习78-4x=2 14.5x2-4x=7 31.4x2.2-28x=13.08 12.18÷2.1-2.4x=1 形如a(x+b)=c或者a(x-b)=c的方程解法(先除去因数a,化成x+b=c÷a 或者x-b=c÷a再计算)例5.解方程(x+3)x12=96 解方程 4.5(30-2x)=69.75解:(x+3)x12÷12=96÷12 解:4.5(30-2x)÷4.5=69.75÷4.5X+3=8 30-2x=15.5X+3-3=8-3 30-2x+2x=15.5+2xX=5 15.5+2x=3015.5+2x-15.5=30-15.52x=14.52x÷2=14.5÷2X=7.25练习 3.6(2x+2.3)=18 5.6(8.4-3x)=31.92 (19.8-6x)x2.3=17.94形如(x+a)÷b=c或者(x-a)÷b=c方程的解法(先除去除数b,化成x+a=cxb 或者x-a=cxb再计算)例6.解方程(2x+2.3)÷3.6=1.5 解方程(30-2x)÷2.4=11解:(2x+2.3)÷3.6x3.6=1.5x3.6 解:(30-2x)÷2.4x2.4=11x2.42x+2.3=4.8 30-2x=26.42x=2.5 30-2x+2x=26.4+2x2x÷2=2.5÷2 26.4+2x=30 X=1.25 26.4+2x-26.4=30-26.42x=3.62x÷2=3.6÷2X=1.8练习(2x+2.3)÷1.5=18 (8.4-3x)÷3=1.9 (19.8-6x)÷2.4=2形如ax+bx=c的方程的解法(先计算化成ax=b的形式再计算)例7. 1.6x+0.8X=24 1.6x-0.8x=24解: 2.4x=24 解:0.8x=242.4x÷2.4=24÷2.4 0.8x÷0.8=24÷0.8X=10 X=30练习8X-3X=65 3.6X+1.2x=6.4 8.7x-6.2x=12.5 4.6x-2.2x=7.2形如(a+b)÷x=c形式的方程解法(两边先乘x化成ax=b形式再计算)例8.(3.6-1.2)÷x=0.8 8.6-2.5÷x=3.6解: 2.4÷x×x=0.8×x 解:8.6×x-2.5÷x×x=3.6×x0.8x=2.4 8.6x-2.5=3.6x0.8x÷0.8=2.4÷0.8 8.6x-2.5-3.6x=3.6x-3.6xX=3 5x-2.5=05x-2.5+2.5=0+2.55x=2.5X=0.5练习8.4-3.3÷x=1.8 (10.5-2.4)÷x=2.1 8+2÷x=12应用题复习:一.年龄问题(找清等量关系列方程)例1.今年王老师的年龄是陈强的3倍,王老师6年前的年龄和陈强10年后的年龄相等,陈强和王老师今年各是多少岁?解1:设陈强今年X岁,王老师今年3X岁,列方程3X-6=X+10 2X=163X-6-X=X+10-X 2X÷2=16÷22X-6=10 X=82X-6+6=10+63 X=24答:陈强今年8岁,王老师今年24岁。
五年级上册解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。
(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。
过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。
带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。
难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。
注意要“带符号移动”,增添括号时还要注意符号的变化。
着运算顺序”同时变化,如含有未知数的一边是“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),难点:当未知数出现在减数和除数时,要先把含有未知数的部分看作一个整体(可以看成是一个新的未知数),就相当于简化成了一步方程。
),因此原方程就可以看成是6+y =10,5y=6和10-y=8的形式。
三、三步方程(一)应用乘法分配律,共同因数是已知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是已知数的,既可以逆用乘法分配律提取共同因数而将其简化为两步方程,也可以直接算出已知部分而化简。
通过比较可以看出,一般来说提取共同因数的方法确实计算量要少一些,不容易算错。
(二)应用乘法分配律,共同因数是未知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是未知数的,只能逆用乘法分配律提取共同因数而将其简化为两步方程。
第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2读作a的平方。
注: 2a表示a+a ; a2表示a×a
3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
7、10个数量关系式:
@ 加法;
和=加数+加数;
一个加数=和-两一个加数
@ 减法:
差=被减数-减数;
被减数=差+减数;
减数=被减数-差
@乘法:
积=因数×因数;
一个因数=积÷另一个因数
@ 除法:
商=被除数÷除数;
被除数=商×除数;
除数=被除数÷商
数学学习技巧:良好习惯、终身受益小学阶段是儿童正式接受学习的最初阶段,是良好学习习惯形成的关键时期,培养良好的学习习惯是形成学生学习能力的重
要方面,也是发展个性的重要方面,因此掌握良好的学习方法是获得成功的关键。
简易高次方程的解法高次方程一直以来是数学中的难点之一,尤其是高于四次方程,没有通式可言,无法用简单的方法解决。
但是对于低于四次方程的情况,我们可以采用一些比较简单的方法来求解。
本文将介绍一些简易高次方程的解法。
一、一次方程和二次方程一次方程和二次方程是最简单的两类方程,它们的解法也是数学基础中最基础的一部分。
一次方程指的是形如ax + b = 0的方程,其中a和b是已知数,需要求出未知数x的值。
解法很简单,只需要把方程移到等式左边,就得到x = -b/a。
二次方程指的是形如ax² + bx + c = 0的方程,其中a、b、c是已知数,需要求出未知数x的值。
解法包括两种:一种是使用求根公式,即x = (-b ± √(b²-4ac))/2a;另一种是配方法,即通过求出b²-4ac的值,再用公式x=(-b±√d)/2a来求解,其中d=b²-4ac。
二、三次方程对于三次方程,通式较为复杂,因此我们需要采用别的方法来求解。
一种方法是使用维达定理,即给定一个三次多项式ax³+bx²+cx+d=0,我们可以通过令x=y-b/3a来把多项式化简为y³+py+q=0的形式,其中p=(3ac-b²)/3a²和q=(2b³-9abc+27a²d)/27a³。
然后我们可以通过求解y³+py+q=0的实根来求得三次方程的解。
另一种方法是使用卡尔达诺公式。
卡尔达诺公式是16世纪意大利学者卡尔达诺发现的,它通过三次方程的根与二次无理数的关系,构造出一个广义立方体方程,再通过这个方程来求得三次方程的根。
具体的推导过程比较复杂,这里不再展开。
三、四次方程四次方程的通式也比较复杂,但特殊情况下也有简单的解法。
例如如果四次方程的项次中只有一次和四次项,那么我们可以通过配方法来解决。
具体来说,形如ax⁴+bx+c=0的四次方程可以化为(x²+p)(x²+q)=0的形式,其中p和q是已知的一次方程,通过解决这个二次方程,我们就可以得到四次方程的解。
新人教版小学数学五年级上册第五单元《简易方程》教材分析及归纳总结本单元的主要内容是研究用字母表示数、运算定律、计算公式和数量关系,以及解决简易方程的方法。
通过研究简易方程,可以培养学生的抽象概括能力,发展他们的思维灵活性,同时巩固和加深所学的算术知识。
二、学情分析对于小学生来说,用字母表示数比较抽象,学生会有一定的难度。
特别是用含有字母的式子来表示数量关系,更让学生感到困难。
因此,在教学中,教师需要充分利用学生原有的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。
学生在研究这部分内容时,需要先研究用字母表示一个特定的数,再研究用字母表示一般的数,也就是用字母表示运算定律和计算公式。
只有建立了这样的基础,学生才能够更好地理解含有字母的式子表示数量和数量关系的概念。
三、教学目标本单元的教学目标包括以下几个方面:让学生初步认识用字母表示数的意义和作用,能用字母表示运算定律和计算公式等,初步了解简易方程,能用等式的性质解简易方程。
同时,还需要培养学生根据具体情况,灵活选择算法的意识和能力,使学生能够列简易方程来解决生活中的实际问题,感受到数学与现实生活的联系。
四、教学重点和难点本单元的教学重点是用含有字母的式子表示数量关系,等式的基本性质,解方程,培养学生书写规范和自觉检验的惯。
教学难点在于用含有字母的式子表示数量关系,以及如何列方程解决实际问题。
五、课时划分本单元共分为20课时,其中6课时用于研究用字母表示数,12课时用于解简易方程,剩余的2课时用于整理和复。
本教材的变化主要包括三点:一是增加用字母表示常见数量关系的例题,为后续解决实际问题列方程做准备;二是明确给出等式的性质,利用等式的性质解方程;三是将解方程和列方程解决问题分开编排,分散难点,并且解方程的类型更全面。
教学目标包括:1.使学生能够用字母表示学过的运算定律和计算公式,初步学会根据字母所取的值,求含有字母式子的值;2.使学生初步了解方程的作用,初步理解等式的基本性质,能用等式的基本性质解简易方程;3.使学生学会列方程解决一些简单的实际问题,培养学生根据具体情况,灵活选择算法的意识和能力。
新人教版小学数学五年级上册第五单元《简易方程》教材分析及归纳总结第5单元简易方程单元分析【教材分析】本单元主要学习的是用字母表示数、运算定律、计算公式和数量关系,学习方程的意义、等式的基本性质和解简易方程,以及在解决一些实际问题中简易方程的运用。
在学生已有的算术和代数知识的基础上学习简易方程,有助于培养学生的抽象概括能力,发展他们思维的灵活性,并且能够巩固和加深所学的算术知识。
【学情分析】用字母表示数,对小学生来说比较抽象,学生理解起来会有一定的难度。
特别是用含有字母的式子来表示数量关系,更让学生感到困难。
让学生从具体的、确定的数过度到用字母表示抽象的、可变的数,对学生来说是认识上的一个飞跃。
因此在教学中,教师要充分利用学生原有的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。
学生在学习这部分内容时,往往不会将含有字母的式子看作是一个量,如:苹果2元一斤,香蕉比苹果贵x 元,2+x 既表示苹果价格与香蕉价格之间的数量关系,也表示香蕉的价格,很多学生认为这只是一个式子,不是结果。
而这正是学生学习简易方程的基础,所以要先学习用字母表示一个特定的数,再学习用字母表示一般的数,也就是用字母表示运算定律和计算公式,让学生有了一定的基础后,再学习用含字母的式子表示数量和数量关系,这样由易到难,便于学生在数学认知上有更高的飞跃。
【教学目标】知识技能:使学生初步认识用字母表示数的意义和作用,能用字母表示运算定律和计算公式等,初步了解简易方程,能用等式的性质解简易方程。
数学思考:培养学生根据具体情况,灵活选择算法的意识和能力。
问题解决:能列简易方程来解决生活中的实际问题。
情感态度:使学生感受到数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。
教学重点:用含有字母的式子表示数量关系,等式的基本性质,解方程,培养学生书写规范和自觉检验的习惯。
教学难点:用含有字母的式子表示数量关系,列方程解决实际问题【课时划分】20课时1.用字母表示数……………………………6课时2.解简易方程………………………………12课时3.整理和复习………………………………2课时象,提出问题:怎样才能用一个式子表示一般情况呢?由此引出含有字母的式子。
第5单元简易方程解题技巧解简易方程的口诀准备讲简易方程的数学教师看看,口诀很实用的,可能会对你的教学会有很大帮助的。
口诀:左边相反,两边一致。
解释:左边相反——左边含有未知数的一边加上几就减去几,减去几就加上几,乘以几就除以几,除以几就乘以几。
两边一致——左边加上几,右边加上几;左边减去几,右边减去几;左边乘以几,右边乘以几;左边除以几,右边除以几。
举例:(1)x﹢5=50解:x﹢5﹣5=50﹣5x=45(2)x﹣5=50解:x﹣5﹢5=50﹢5x=55(3)5x=50解:5x÷5=50÷5x=10(4)x÷5=50解:x÷5×5=50×5x=250按住Ctrl键单击鼠标打开配套的名师解题教学视频播放五年级上册解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。
(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。
过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。
带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。
难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。
注意要“带符号移动”,增添括号时还要注意符号的变化。
“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。
简易方程——整理和复习教案教学目标:1、加深理解简易方程的意义和作用,会解简易方程。
2、让学生独立思考、自主探究、合作交流,加深对列方程解题的认识。
3、培养学生的数感和符号感。
教学重点:理解方程的意义,会解简易方程。
教学难点:归纳整理知识,形成知识体系。
教学过程:一、揭示课题师:今天我们来复习解简易方程,通过复习要进一步明白字母可以表示数量、数量关系和计算公式,加深对方程概念的理解,掌握解简易方程的步骤、方法,从而能正确地解简易方程。
二、复习解简易方程1、完成“解方程”题目,汇报、总结解方程的原理是什么?要注意什么?2、解方程的依据:①四则运算之间各部分的关系。
一个加数=和-另一个加数一个因数=积÷另一个因数被减数=差+减数减数=被减数-差被除数=商×除数除数=被除数÷商②等式的性质。
方程两边同时加上(或减去)同一个数,左右两边仍然相等;方程两边同时乘或除以一个(不为0)的数,左右两边仍然相等。
③解方程时应注意:书写时要先写“解”字;上、下行的等号要对齐;不能连等。
三、利用简易方程解决问题1、阿姨现在的体重是93kg,这两个月坚持锻炼,体重减少了3kg,两个月前,他的体重是多少千克?2、每盏路灯要装5个灯泡,这条街一共需要140个灯泡。
这条街一共有多少盏路灯?3、大鹿比小鹿高米,大鹿的高度是小鹿的倍,大鹿高多少米?小鹿高多少米?学生独立解答,汇报交流师:列方程解决问题有哪些步骤?检验时要注意什么?四、比较算数解法与方程解法复习时,可先让学生思考教材提出的问题,通过回答重温用方程解决实际问题的步骤,交流列方程的经验与教训。
五、完成练习十八中的练习题六、说说本单元你收获了什么?。
第一单元:简易方程知识点1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
数与数之间的乘号不能省略。
a×a可以写作a·a (或2a) ,2a读作a的平方,表示两个a相乘。
2a表示a+a2、数字和字母相乘,省略乘号时要把数字写在前面。
(如b×4写作4b )3、等式的性质:等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
方程两边同时加、减、乘、除一个不等于0的数,左右两边仍然相等。
4、方程和等式的关系:含有未知数的等式叫做方程,所有的方程都是等式,但等式不一定都是方程。
如2+3=5是等式,但不是方程。
此类题如乐园第1页,第一题。
注意:X=3此类也是方程。
5、解方程需要注意什么?(每天坚持练习)(1)一定要写‘解’字。
(2)等号要对齐。
(3)两边乘除相同数的时候,这个数不要为0.典型例子:3.8x-x=0.56 3.8-x=0.56 7x+3x+26=74 2x-4×2.5=3.66、方程的检验过程:方程左边=……=方程右边所以,X=…是方程的解。
7、列方程解应用题总结几种情况:(1)比字句。
(如课本20页第7题,根据比字句找出关系式,列方程)(2)找总量。
(如课本19页第3、4题,根据总量找关系式,列方程)(3)相遇问题(如课本21页第9题,根据总路程列方程)。
(4)根据公式列方程(如15页第3题,根据公式列方程)。
(5)根据不变量列方程。
(如:如果每个房间住6人,有20人没床位;如果每房间住8人,正好住满。
有多少房间?根据两种方案的不变量“总人数”列方程)。
请根据几种情况,找题练习。
注意:问题为两个未知量时,一般根据有关倍数的句子,写设。
方程的解是一个数值,如x=3,不加单位名称。
解方程是一个过程。
如30-3x=21,这类-x或÷x的方程的解法小学阶段没有学习,因此,列方程时,尽量不要列成此类。
简易方程的知识点例如:5×(3-2).项在小学阶段,一个大致的说法:一个没有括号、仅用加减乘除号连接若干数而成的算式,被加减号隔开的部分算上它前面的加或减号叫做项.例如算式“5+4×5-5÷6÷8+10-6”中一共有5项,其中第一项是“+5”,第三项是“-5÷6÷8”.等式表示相等关系的式子.例如:5×(3-2)=5.字母abcdefghijklmnopqrstuvwxyz就是我们常说的26个字母.字母可以表示一个(暂时)未知的数,这个数可能是1(a=1),也可能是2(a=2),由于事先不知道具体是几,所以无法用数来表示,但是可以用字母x(或其他字母)来表示这个(暂时)未知的数,这样做的好处是:即使事先不知道这个数是几,我们也能用让它以字母的形式参与到算式、等式中,进行(代数)运算.用字母表示数量关系用字母或者含有字母的式子都可以表示数量,也可以表示数量关系.例如可用字母表示周长面积公式:1.长方形的周长等于长加宽之和的二倍,可用字母表示为:C=2(a+b);2.长方形的面积等于长乘宽,可用字母表示为:S=ab;3.正方形的周长等于边长的四倍,可用字母表示为:C=4a;4.正方形的面积等于边长乘边长,可用字母表示为:S=a×a=a².用字母表示运算定律如果用a、b、c分别表示三个数,那么可用它们来表示以下运算定律:1.加法交换律:a+b=b+a;2.加法结合律:(a+b)+c=a+(b+c);3.乘法交换律:a×b=b×a;4.乘法结合律:(a×b)×c=a×(b×c);5.乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c;6.减法的运算性质:a-b-c=a-(b+c);7.除法的运算性质:a÷b÷c=a÷(b×c).数字与字母乘积的表示法1.在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“·”表示或省略不写,例如——a×b=a·b=ab;2.数字一般都写在字母前面,例如——a×5=5×a=5a(而不是a5);3.数字1与字母相乘时,1省略不写,例如——1×a=a×1=a(而不是1a);4.出现多个字母相乘时,字母按照26个字母顺序写,例如——a×c×b=abc(而不是acb);5.2个或多个相同字母相乘时,写成平方或立方或n次方,例如——a×a=a²、b×b×b=b³;6.重点区分a²与2a——a²=a×a,而2a=2×a.因数两个或多个数相乘,相乘的每个乘数都是因数.例如“5×7×a”中“5”“7”“a”都是因数.系数“5a”的系数是5,系数就是某一含字母的项的前面的数字因数,特别地,“a”的系数是1.方程的起源方程这个名词,最早见于我国古代算书《九章算术》.《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章.在这一章里的所谓“方程”,是指一次方程和方程组.例如其中的第一个问题实际上就是求解三元一次方程组.古代解方程的方法是利用算筹.我国古代数学家刘徽注释《九章算术》说,“程,课程也.二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这里所谓的“如物数程之”,是指有几个未知数就必须列出几个等式.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程.《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产.方程的重要性方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点.渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方程对于学生以后学习数论、行程等较难专题有很大帮助.方程的含义含有未知数的等式叫方程.1.未知数通常用字母表示,例如——“5x=10”是方程;2.方程必须是等式,例如——“5x>10”不是方程;3.等式不一定是方程,例如——“1+2+3=3+2+1”不是方程.方程的命名方程被命名为“n元a次方程”,即含有n个未知数,且含未知数项最高次数是a的方程.例如:5x=10是一元一次方程,5x²=10是一元二次方程,5x+y=10是二元一次方程,5x+y²=10是二元二次方程,x +y+z是三元一次方程……方程的解能使方程左右两边相等的未知数(字母)的值叫做方程的解.解方程求方程的解的过程叫解方程.所以我们做方程的题时要先写“解”字,表示求方程的解的过程开始,也就是开始“解方程”.等式性质一等式两边都加上(或减去)同一个数,等式仍然成立.例如:若a=b,则a+x=b+x、a-x=b-x.等式性质二等式两边都乘同一个数(或都除以一个不为0的数),等式仍然成立.例如:若a=b,则ax=bx(x是一个可以为0的数)、a÷y =b÷y(y是一个不为0的数).解方程的步骤解一元一次方程的步骤一般包括:去分母→去括号→移项变号→合并同类项→系数化1.1.去分母:若未知数系数是分数,要先把分母去掉,可以利用等式性质二来去分母;2.去括号:若括号前面是减号,打开括号时注意括号里的加减号要变号;若括号前面有倍数应遵守乘法分配律让倍数乘括号里的每一项;若括号前既有减号又有倍数,可以先将倍数乘进括号里(乘法分配律),再打开括号变号;3.移项变号:移项的本质是等式性质一,利用等式性质一可以将方程的某一项移动到等号另一边,并且该项会变号;移项的目的是为了把含有x的未知项和数字项分别放在等号的两端,使“未知项=数字项”,从而求出方程的解;4.合并同类项:数与数是同类,相同字母是同类,同类才可以相加减合并在一起;5.系数化1:解一元一次方程的最后一行一定形如“x=a”(a是某个已知数),若x的前面有系数,应该利用等式性质二两边同时除以系数.6.检验方程的解:判断一个数是不是方程的解,就要把这个数代入原方程,看方程两边结果是否相同.解方程的书写格式•解方程前要先写一个“解”字和冒号,形如“解:”;•一步一拖式,每行只有一个等号“=”,且等号在中间常见错误:写成递等式,左边多写了一个等号形如“=5x=10”;•行与行的等号“=”要上下对齐,形如:•表示未知数的字母一般要放在等号的左侧,例如“5=x”最终要写成“x=5”.。
小学五年级数学的简易方程知识点归纳
小学五年级数学的简易方程知识点归纳
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
下面为大家带来了小学五年级数学的'简易方程知识点归纳,欢迎大家参考!
1、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a,a读作a的平方。
2a表示a+a
3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
5、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数;被减数=差+减数;减数=被减数-差
乘法:积=因数×因数;一个因数=积÷另一个因数
除法:商=被除数÷除数;被除数=商×除数;除数=被除数÷商
6、所有的方程都是等式,但等式不一定都是方程。
7、方程的检验过程:方程左边=……
8、方程的解是一个数;
解方程式一个计算过程。
=方程右边
所以,X=…是方程的解。
【小学五年级数学的简易方程知识点归纳】。
第二讲简易方程第二讲简易方程知识点:1、等式的意义表示相等关系的式子叫做等式。
2、方程的意义含有未知数的等式叫做方程。
注意:方程一定是等式,但等式不一定是方程。
3、方程的解能使方程左右两边相等的未知数的值叫做方程的解。
4、解方程求方程解的过程叫做解方程。
解方程与方程的解是两个完全不同的概念,解方程是求方程的解的过程,而方程的解指的是一个数值。
5、解方程的方法(1)、根据四则运算中的互逆关系求解。
(2)、根据的等式的性质求解。
等式的性质1:等式的两边同时加上(或减去)同一个数,等式依然成立。
等式的性质2:等式的两边同时乘以(或除以)同一个不为0的数,等式依然成立。
6、解方程时应注意的问题(1)、解方程时,要在方程式的左下方写上“解”字。
因为方程本身就是一个等式,解方程的过程并不是在进行脱式计算,因此不能连等。
上、下步中的等号要对齐,求出结果后要把表示未知数的字母写在等号的左边。
(2)、做每一步的运算时,都要弄清这一步运算的依据。
(3)、求出方程的解后,要进行检验。
检验的方法就是把未知数的值代入原方程中进行计算,看能否使方程左右两边的值相等。
如果相等,那就说明解对了;如果不等,那就说明解错了。
这就是说解方程时我们自己就可以判断出解的正确与否。
7、我们可以用列方程的方法解答一些文字题和有关的应用题。
在这些题型中,关键是找到题目中的相等的数量关系。
例题:1、判断。
(1)、5x+6是方程。
()(2)、等式就是方程。
()(3)、3x=0是方程。
()(4)、2x-(2x-3)=3是方程。
()2、解方程。
(1)、2x+15=43请你试着用加减法以及乘除法的互逆关系求解。
接下来,请你试着用等式的性质求解。
解完后,你如何知道自己的解是正确的还是错误的?(2)、5×(3x-6)=75请你试着用加减法以及乘除法的互逆关系求解。
接下来,请你试着用等式的性质求解。
解完后,你如何知道自己的解是正确的还是错误的?3、一个数的3倍,加上6与8的积,和是84,求这个数。
第五单元简易方程思维导图重难点梳理典例解析典例1(易错题—混淆a²和2a表示的意义)判断:当a=2时,a²=2×2=4,2a=2×2=4,所以,a²一定等于2a。
()解析不要混淆了a²和2a表示的意义,a²表示两个a相乘,可以写成a×a;2a表示两个a相加,可以写成a+a,a可以表示任何数,只有当a等于0或2时,才能得出a²=2a,所以a²不一定等于2a。
解答×典例2(易错点—对含有字母的式子理解不正确)判断:x+x+x=3+x。
()解析3个x相加,不应该写成3+x,而应写成3与x相乘的形式,即3x。
几个相同的字母相加,简写时应写成相同字母的个数与字母相乘的形式。
解答×典例3(易错点—年龄差不变)选择:小亮今年a岁,小丽今年(a-5)岁,b年后两人年龄相差()岁。
A、bB、5+bC、5解析已知小亮今年a岁,小丽今年(a-5)岁,可以求出两人的年龄相差5岁。
b年后,两人的年龄差仍是5岁。
解答 C典例3 (用含字母的式子表示图形的面积)教材P57第13题在右图中(1)哪一部分的面积是ac?(2)哪一部分的面积是bc?(3)整格图形的面积是多少?解析题中有三个长方形,只要分别找出三个长方形的长宽,再根据“长×宽=长方形的面积”,就可以表示出每个长方形的面积。
解答(1)左边长方形的面积是ac。
(2)右边长方形的面积是bc。
(3)整个图形的面积是(a+b)或ac+bc。
典例4 (用含有字母的式子解决实际问题)小彤家、小涵家和学校在一条直线上,已知小彤家和小涵家相距x千米,小彤家和学校相距y千米(x>y),用字母表示小涵家到学校的距离。
解析(1)小彤家和小涵家在学校的同侧:(2)小彤家和小涵家在学校的两侧:解答小涵家到学校的距离为(x+y)千米或(x-y)千米。
典例5(含有字母的式子带入求值)教材P61第11题当x=6时,x²和2x各等于多少?当x的值时多少时,x²和2x正好相等?解析x²表示两个x相乘,2x表示2和x相乘。
1、解形如X±a=b的方程X+a=b X-a=b 解:X+a-a=b-a 解:X-a+a=b+a X=b-a X=b+a 2、解形如a-X=b的方程※a-X=b解:a-x+x=b+xa=b+xa-b=b-b+xx=a-b3、解形如ax=b的方程aX=b解; ax÷a=b÷aX=b÷a4、解形如a÷x=b的方程※a÷X=b解:a÷X×X=b×Xa=b×Xa÷b=b÷b×XX=a÷b5、解形如x÷a=b的方程※X÷a=b解:X÷a×a=b×aX=b×a6、解形如ax±b=c(a≠0)的方程aX-b=c(a≠0)把“ax”看作一个整体精品解:ax-b+b=c+bax=c+bax÷a=(c+b) ÷ax=(c+b) ÷aaX+b=c(a≠0)解:ax+b-b=c-b 把“ax”看作一个整体方程的两边同时减去b ax=c-bax÷a=(c-b)÷ax=(c-b)÷a7、解形如ax±ab=c(a≠0)的方程可以转化为:a(x±b)=c 再解8、解形如a(x+b)=c (a≠0)的方程把“x+b”看作一个整体,方程的两边同时除以a书写格式例如80-X=60解:80-X+X=60+X 检验:x=20代入原方程80=60+X 方程左边=80-X80-60=60-60+X =80-20X=20 =60=方程的右边所以x=20是方程的解定律、公式1、加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a×b=b×a精品乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c3、减法性质:a-b-c=a-(b+c)a-b-c=a-c-b4、除法性质:a÷b÷c=a÷(b×c)a÷b÷c=a÷c÷b5、去括号:a+(b-c)=a+b-c a-(b-c)=a-b+ca÷b×c= a÷(b÷c)6、长方形:ba长方形周长=(长+宽)×2 字母公式:C=(a+b)×2 长方形面积=长×宽字母公式:S=ab7、正方形:a正方形周长=边长×4 字母公式:C=4a正方形面积=S=a×a8、平行四边形a字母公式:S=ah9、三角形精品a三角形的面积=底×高÷2 字母公式:S=ah÷2三角形的底=面积×2÷高;三角形的高=面积×2÷底)10、梯形上底a下底b梯形的面积=(上底+下底)×高÷2母字公式:S=(a+b)h÷2上底=面积×2÷高-下底下底=面积×2÷高-上底高=面积×2÷(上底+下底)如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!精品。
1、解形如X±a=b的方程
X+a=b X-a=b 解:X+a-a=b-a 解:X-a+a=b+a X=b-a X=b+a
2、解形如a-X=b的方程※
a-X=b
解:a-x+x=b+x
a=b+x
a-b=b-b+x
x=a-b
3、解形如ax=b的方程
aX=b
解; ax÷a=b÷a
X=b÷a
4、解形如a÷x=b的方程※
a÷X=b
解:a÷X×X=b×X
a=b×X
a÷b=b÷b×X
X=a÷b
5、解形如x÷a=b的方程※
X÷a=b
解:X÷a×a=b×a
X=b×a 6、解形如ax±b=c(a≠0)的方程
aX-b=c(a≠0)把“ax”看作一个整体
解:ax-b+b=c+b
ax=c+b
ax÷a=(c+b) ÷a
x=(c+b) ÷a
aX+b=c(a≠0)
解:ax+b-b=c-b 把“ax”看作一个整体方程的两边同时减去b ax=c-b
ax÷a=(c-b)÷a
x=(c-b)÷a
7、解形如ax±ab=c(a≠0)的方程
可以转化为:a(x±b)=c 再解
8、解形如a(x+b)=c (a≠0)的方程
把“x+b”看作一个整体,方程的两边同时除以a
书写格式
例如 80-X=60
解:80-X+X=60+X 检验:x=20代入原方程
80=60+X 方程左边=80-X
80-60=60-60+X =80-20
X=20 =60
=方程的右边
所以x=20是方程的解
定律、公式
1、加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
2、乘法交换律:a ×b=b ×a
乘法结合律:(a ×b)×c=a ×(b ×c) 乘法分配律:(a+b)×c=a ×c+b ×c
或 (a-b)×c=a ×c-b ×c
3、减法性质:a-b-c=a-(b+c)
a-b-c=a-c-b
4、除法性质:
a ÷
b ÷c=a ÷(b ×c) a ÷b ÷c=a ÷
c ÷b
5、去括号: a+(b-c)=a+b-c a-(b-c)=a-b+c
a ÷
b ×c= a ÷(b ÷c)
6、长方形:
a
长方形周长
=(长
+宽)×2 字母公式:C=(a+b)×2 长方形面积=长×宽 字母公式:S=ab 7、正方形:
正方形周长=边长×4 字母公式:C=4a 正方形面积=S=a ×a 8、平行四边形
字母公式:S=ah 9、三角形
a
三角形的面积=底×高÷2 字母公式:S=ah ÷2 三角形的 底=面积×2÷高;
三角形的 高=面积×2÷底) 10、梯形 上底a
下底b
梯形的面积=(上底+下底)×高÷2 母字公式: S=(a+b)h÷2 上底=面积×2÷高-下底
下底=面积×2÷高-上底
高=面积×2÷(上底+下底)
古希腊哲学大师亚里士多德说:人有两种,一种即“吃饭是为了活着”,一种是“活着是为了吃饭”.一个人之所以伟大,首先是因为他有超于常人的心。
“志当存高远”,“风物长宜放眼量”,这些古语皆鼓舞人们要树立雄心壮志,要有远大的理想。
有一位心理学家到一个建筑工地,分别问三个正在砌砖的工人:“
你在干什么?”
第一个工人懒洋洋地说:“我在砌砖。
” 第二个工人缺乏热情地说:“我在砌一堵墙。
” 第三个工人满怀憧憬地说:“我在建一座高楼!”
听完回答,心理学家判定:第一个人心中只有砖,他一辈子能把砖砌好就不错了;第二个人眼中只有墙,好好干或许能当一位技术员;而第三个人心中已经立起了一座殿堂,因为他心态乐观,胸怀远大的志向!
井底之蛙,只能看到巴掌大的天空;摸到大象腿的盲人,只能认为大象长得像柱子;登上五岳的人,才能感觉“一览众山小”;看到大海的人,就会顿感心胸开阔舒畅;
心中没有希望的人,是世界上最贫穷的人;心中没有梦想的人,是普天下最平庸的人;目光短浅的人,是最没有希望的人。
清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个人的希望和梦想,决定了他的人生暗淡或辉煌。