高考数学 专题12 概率与统计热点难点突破 文
- 格式:doc
- 大小:204.00 KB
- 文档页数:6
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
专题十二概率统计真题卷题号考点考向2023新课标1卷9 样本的数字特征样本的平均值、中位数、标准差、极差21独立事件的概率、互斥事件的概率、离散型随机变量的分布列与数字特征求独立事件的概率、互斥事件的概率、求离散型随机变量的期望(概率与数列的综合应用)2023新课标2卷3 随机抽样分层抽样12 独立事件的概率求独立事件的概率19 频率分布直方图、概率与函数的综合应用利用频率分布直方图求概率、概率与函数的综合应用2022新高考1卷5 古典概型古典概型及其计算20 独立性检验、条件概率独立性检验、条件概率的计算、新定义问题2022新高考2卷13 正态分布正态分布求概率19 概率统计的综合应用频率分布直方图、求对立事件的概率、求条件概率2021新高考1卷8 独立事件独立事件的判断9 样本的数字特征求样本的平均数、中位数、标准差、极差18 离散型随机变量的分布列、期望求离散型随机变量的分布列及期望并作出决策2021新高考2卷6 正态分布求正态分布的概率9 样本的数字特征研究样本数据的离散程度与集中趋势21 离散型随机变量的期望求离散型随机变量的期望、及期望的范围问题及期望的实际意义2020新高考1卷6 事件间的关系事件间的关系及运算19 古典概型、独立性检验古典概型的概率计算、独立性检验2020新高考2卷9统计图表 折线图中的数据分析 19古典概型、独立性检验古典概型的概率计算、独立性检验【2023年真题】1.(2023·新课标II 卷 第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有 A. 4515400200C C ⋅种B. 2040400200C C ⋅种C. 3030400200C C ⋅种D. 4020400200C C ⋅种2. (2023·新课标I 卷 第9题)(多选)一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差3.(2023·新课标II 卷 第12题)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1;α−发送1时,收到0的概率为(01)ββ<<,收到1的概率为1.β−考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A. 采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ−−B. 采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ−C. 采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ−+−D. 当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率4. (2023·新课标I 卷 第21题)甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率. (2)求第i 次投篮的人是甲的概率.(3)已知:若随机变量i X 服从两点分布,且111(1)1(0)P X P X q ==−==,1i =,2, ,n ,则11().nni i i i E X q ===∑∑记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求().E Y5.(2023·新课标II 卷 第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为().q c 假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()().f c p c q c =+当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.【2022年真题】6.(2022·新高考I 卷 第5题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A.16B.13C.12D.237.(2022·新高考II 卷 第13题)随机变量X 服从正态分布2(2,)N σ,若(2 2.5)0.36P x <=…,则( 2.5)P X >=__________.8.(2022·新高考I 卷 第20题)一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好 病例组 40 60 对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为.R()i 证明:(|)(|).;(|)(|)P A B P A B R P A B P A B =()ii 利用该调查数据,给出(|)P A B ,(|)P A B 的估计值,并利用()i 的结果给出R 的估计值.附:22()()()()()n ad bc K a b c d a c b d −=++++,2()P K k …0.050 0.010 0.001 k 3.8416.63510.8289.(2022·新高考II卷第19题)在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄;(同一组数据用该区间的中点值作代表)(2)估计该地区以为这种疾病患者年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口数占该地区总人口数的16%,从该地区选出1人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(精确到0.0001).【2021年真题】10.(2021·新高考I卷第8题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球、甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立11.(2021·新高考II卷第6题)某物理量的测量结果服从正态分布,下列结论中不正确的是( )A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等12.(2021·新高考I 卷 第9题)(多选)有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中(1,2,,)i i y x c i n =+= ,c 为非零常数,则 A. 两组样本数据的样本平均数相同 B. 两组样本数据的样本中位数相同 C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同13.(2021·新高考II 卷 第9题)(多选)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( ) A. 样本12,,,n x x x 的标准差 B. 样本12,,,n x x x 的中位数 C. 样本12,,,n x x x 的极差D. 样本12,,,n x x x 的平均数14.(2021·新高考I 卷 第18题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分。
重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。
专题十二概率统计大题(一)命题特点和预测:分析近8年的全国新课标1理数试卷,发现8年8考,每年1题.以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,位置为18题或19题,难度为中档题.2019年仍将以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,难度仍为中档题.(二)历年试题比较:年份题目2018年【2018新课标1,理20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?2017年【2017新课标1,理19】(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2 (,)Nμσ.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求(1)P X≥及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得,,其中ix 为抽取的第i 个零件的尺寸,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则,,.2016年 【2016高考新课标理数1】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列; (II )若要求,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?2015年 【2015高考新课标1,理19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xy w821()ii x x =-∑46.656.36.8289.81.61469108.8表中i i w x = ,w =1881ii w=∑(Ⅰ)根据散点图判断,y=a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x.根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:,=v u αβ-2014年 【2014课标Ⅰ,理18】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I)求这500件产品质量指标值的样本平均值x和样本方差2s(同一组的数据用该组区间的中点值作代表);(II)由直方图可以认为,这种产品的质量指标Z服从正态分布()2,Nμσ,其中μ近似为样本平均数x,2σ近似为样本方差2s.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间的产品件数.利用(i)的结果,求EX.附:若则,。
1.【浙江省金丽衢十二校2014届高三第二次联考】4张卡上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为A. 12B.13C.23D.342.【浙江省金丽衢十二校2014届高三第二次联考】在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为A. 17B.27C.37D.473.【上海市松江区2014届高三上学期期末考试数学(理)试题】某市共有400所学校,现要用系统抽样的方法抽取20所学校作为样本,调查学生课外阅读的情况.把这400所学校编上1~400的号码,再从1~20中随机抽取一个号码,如果此时抽得的号码是6,则在编号为21到40的学校中,应抽取的学校的编号为A .25 B.26 C.27 D.以上都不是4.【2014年广东省广州市普通高中毕业班综合测试一】某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图1所示的频率分布直方图,样本数据分组为[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.若用分层抽样的方法从样本中抽取分数在[]80,100范围内的数据16个,则其中分数在[]90,100范围内的样本数据有( )A.5个B.6个C.8个D.10个5.【广东省梅州市2014届高三3月质检】如图,设D 是图中边长为2的正方形区域.,E 是函数3y x =的图像与x 轴及1x =±围成的阴影区域,项D 中随机投一点,则该点落入E 中的概率为( )A .116 B .18 C .14 D .126.【四川省雅安中学2014届高三下期3月月考数学(理)】设(x1,y1),(x2,y2),…,(x n,y n)是变量x 和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A.直线l过点(x,y)B.x和y的相关系数为直线l的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同【答案】A【解析】试题分析:所有线性回归直线必过中心点(x,y),所以A正确.考点:线性回归方程.7.【重庆五区2014届高三学生学业抽测(1)数学(理)】某小卖部销售一品牌饮料的零售价x(元/瓶)与销量y(瓶)的关系统计如下:已知,x y 的关系符合线性回归方程$$y bx a=+$,其中20b=-$,$a y bx=-$.当单价为4.2元时,估计该小卖部销售这种品牌饮料的销量为()A.20 B.22 C.24 D.268.【资阳市高中2011级高考模拟考试数学(理)】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是(A)人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%零售价x(元/瓶) 3.0 3.2 3.4 3.6 3.8 4.0销量y(瓶)50 44 43 40 35 28(B )人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20% (C )人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20% (D )人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%【答案】B 【解析】试题分析:观察图形,可知人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%,故选B 考点:线性相关9. 【重庆五区2014届高三学生学业抽测(1)数学(理)】设点(,a b )是区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,函数2()41f x ax bx =-+在区间[1,+∞)上是增函数的概率为 ( )A .14 B .23 C .13 D .1210. 【资阳市高中2011级高考模拟考试数学(理)】已知实数[1,10]x ∈,执行右图所示的程序框图,则输出x 的值不小于55的概率为 (A )19 (B )29 (C )49 (D )59考点:1、程序框图;2、几何概型11. (2014年福建省普通高中毕业班质量检查)向圆内随机投掷一点,此点落在该圆的内接正n ()3,n n ≥∈N 边形内的概率为n p ,下列论断正确的是( )A .随着n 的增大,n p 增大B .随着n 的增大,n p 减小C .随着n 的增大,n p 先增大后减小D .随着n 的增大,n p 先减小后增大12. (福建省福州一中2014届高三上学期期末考试) 某学校高一、高二、高三共有2400名学生,为了调查学生的课余学习情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知高一有820名学生,高二有780名学生,则在该学校的高三应抽取 _____________名学生.13. ( 福建省漳州市2014年普通高中毕业班质量检查)在区间[﹣2,4]上随机地取一个数x ,则满足|x|≤ 3的概率为 . 【答案】56【解析】试题分析:由3,33x x ≤∴-≤≤.所以在区间[﹣2,4]上随机地取一个数x. 满足|x|≤ 3的概率为56. 考点:1.几何概型的知识.2.绝对值不等式的解法.14. 【四川省雅安中学2014届高三下期3月月考数学(理)】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答).15.【广东省东莞市2014届高三模拟考试一】某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.16.【广东省揭阳市2014届高三3月第一次模拟考试】根据某固定测速点测得的某时段内过往的100辆机km h)绘制的频率分布直方图如图(3)所示.该路段限速标志牌提示机动车辆动车的行驶速度(单位:/km h km h,则该时段内过往的这100辆机动车中属非正常行驶的有辆,正常行驶速度为60/~120/图中的x值为 .17.【广东省韶关市2014届高三调研考试】已知实数[0,10]x ∈,执行如图所示的程序框图,则输出的x 不小于47的概率为 .【答案】12【解析】试题分析:由几何概型得到输出的x 不小于47的概率为P ==考点:程序框图 几何概型18.【广东省揭阳市2014届高三3月第一次模拟考试】从[]0,10中任取一个数x ,从[]0,6中任取一个数y ,则使534x y -+-≤的概率为 .考点:1.含绝对值的不等式;2.几何概型19.【崇明县2013学年高三第一学期期末考试(理)试卷】某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为.20. 【上海市六校2014届高三下学期第二次联考数学(理)试题】从0,1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c =++的系数,则使得()12f ∈Z 的概率为 .21. 【上海市松江区2014届高三上学期期末考试数学(理)试题】某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1, 10.2,10.1,则这组数据的方差为 ▲ .22. 【上海市松江区2014届高三上学期期末考试数学(理)试题】从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则关于x 的方程2220x ax b ++=有两个虚根的概率是 ▲ .【答案】15【解析】试题分析:这实质是一个古典概型问题,首先题中选取数,a b 的总方法为5315⨯=,而要使方程有虚根,则22440a b ∆=-<,即a b <(因为题中,a b 均为正数),而满足这个条件的(,)a b 只能取(1,2),(1,3),(2,3)共3种,故概率为31155=. 考点:古典概型.23. 【浙江省金丽衢十二校2014届高三第二次联考】某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],,(5.1,5.4]⋅⋅⋅.经过数据处理,得到如下频率分布表:分组 频数 频率(3.9,4.2] 3 0.06(4.2,4.5] 6 0.12.5,4.8] 25 x(4.8,5.1] y z(5.1,5.4] 2 0.04合计 n 1.00则频率分布表中未知量z =__________.【答案】0.28【解析】因为由(3.9,4.2]的频数为3,频率为0.06所以样本容量为50.所以可得y=14.所以140.2850z ==. 【考点】1.从图表中获取信息的能力.2.频数、频率、与样本容量间的关系.24.如图是一个样本的频率分布直方图,由图形中的数据可以估计众数是_______.中位数是________.【答案】12.5;13;【解析】25.【2014年浙江省嘉兴市2014届高三3月教学测试(一)】某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分,答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率为34,则该学生在面试时得分的期望为______.26.【2014年温州市高三第一次适应性测试】同时抛掷4枚硬币,其中恰有2枚正面朝上的概率是.(结果用分数表示).27.【2014年浙江省嘉兴市2014届高三3月教学测试(一)】【2013学年第一学期温州市十校联合体期末联考】一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是.【答案】12【解析】试题分析:由题意知,抽样比例为2898,故应抽取女运动员人数是28421298⨯=(人).考点:分层抽样.28. 【浙江省东阳中学2013-2014学年高二3月阶段考试】如图是一个样本的频率分布直方图,由图形中的数据可以估计众数是 .中位数是 .29.【2014年浙江省嘉兴市2014届高三3月教学测试(一)】由数字0,1,2,3组成一个没有重复数字,且不被10整除的四位数,则两个偶函数不相邻的概率是______.考点:古典概型整除30.【浙江省东阳中学2013-2014学年高二3月阶段考试】某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分,打错倒扣5分(每道题都必须回答,但相互不影响),设某学生对每道题答对的概率都为34,则该学生在面试时得分的期望为 .31.【浙江省东阳中学2013-2014学年高二3月阶段考试】由数字0,1,2,3组成一个没有重复数字,且不被10整除的四位数,则两个偶数不相邻的概率是 .32. (2014年福建省普通高中毕业班质量检查) (本小题满分13分)某地区共有100万人,现从中随机抽查800人,发现有700人不吸烟,100人吸烟.这100位吸烟者年均烟草消费支出情况的频率分布直方图如图.将频率视为概率,回答下列问题:(Ⅰ)在该地区随机抽取3个人,求其中至少1人吸烟的概率;(Ⅱ)据统计,烟草消费税大约为烟草消费支出的40%,该地区为居民支付因吸烟导致的疾病治疗等各种费用年均约为18800万元.问:当地烟草消费税是否足以支付当地居民因吸烟导致的疾病治疗等各种费用?说明理由.(II)33. ( 福建省福州市2014届高三毕业班质检) (本小题满分13分)在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:规定:当产品中的此种元素含量15≥毫克时为优质品.(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.试题解析:(I)甲厂抽取的样本中优等品有7件,优等品率为7.10乙厂抽取的样本中优等品有8件,优等品率为84.105= (II)ξ的取值为1,2,3. 12823101(1),15C C P C ξ⋅===21823107(2),15C C P C ξ⋅===157)3(3100238=⋅==C C C P ξ 所以ξ的分布列为 ξ1 2 3 P 115 715715故的数学期望为17712 123.1515155Eξ=⨯+⨯+⨯=()考点:1.茎叶图的知识.2.列举对比的数学思想.3.数学期望的计算.4.概率知识.34.( 福建省漳州市2014年普通高中毕业班质量检查)(本小题满分13分)某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):(Ⅰ)指出这组数据的众数和中位数;(Ⅱ)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(Ⅲ)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.试题解析:(Ⅰ)众数:8.6;中位数:8.75 ;(Ⅱ)设iA表示所取3人中有i个人是“极幸福”,至多有1人是“极幸福”记为事件A,则140121)()()(316212143163121=+=+=CCCCCAPAPAP;ξE 27279101230.7564646464=⨯+⨯+⨯+⨯=. 另解:ξ的可能取值为0,1,2,3,则1~(3,)4B ξ,因此3313()()()44k k k P k C ξ-==. 有6427)43()0(3===ξP ;6427)43(41)1(213===C P ξ;64943)41()2(223===C P ξ;641)41()3(3===ξP . ξ的分布列为: ξ0 1 2 3 P6427 6427 649 641 所以ξE =75.0413=⨯. 考点:1.统计的知识.2.概率的计算.3.数学期望的计算.35. 【成都七中高2014届高三3月高考模拟考试数学(理)】(本小题满分12分)为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:应该取消应该保留 无所谓 在校学生 2100人120人 y 人 社会人士 600人 x 人z 人 (Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?调查人群 态度(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.即ξ的分布列为:ξ 1 2 3P 153515分∴Eξ=1×15+2×35+3×15=2.…………………………………………… 12分考点:1、简单随机抽样;2、古典概型;3、随机变量的分布列及期望.36. 【成都市新津中学高2014届高三(下)二月月考数学(理)】(本小题满分12分)若盒中装有同一型号的灯泡共10只,其中有8只合格品,2只次品.(Ⅰ)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率; (Ⅱ)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数x 的分布列和数学期望.【解析】(Ⅱ)依据知X 的可能取值为1.2.3 …………………………………..(6分) 且541081===)(x P …………………………………..(7分) 458981022=⨯==)(x P ………………………………..(8分) 45188911023=⨯⨯==)(x P …………………………………..(9分)则X 的分布列如下表: X 123p54 458 451 …………………………………..(10分)911455545345164536==++=EX …………………………………..(12分) 考点:1、古典概型;2、随机变量的分布列及期望.37. 【成都外国语学校高2014届高三(下)二月月考数学(理)】(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元。
专题12 概率与统计
1.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925
答案:B
2.在区间[-5,5]内随机地取出一个数a ,则恰好使1是关于x 的不等式2x 2
+ax -a 2
<0的一个解的概率为( )
A .0.3
B .0.4
C .0.6
D .0.7 解析:由已知得2+a -a 2
<0, 解得a >2或a <-1.
故当a ∈[-5,-1)∪(2,5]时,1是关于x 的不等式2x 2
+ax -a 2
<0的一个解. 故所求事件的概率P =(-1+5)+(5-2)5-(-5)=710=0.7.
答案:D
3.某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在直角坐标系xOy 中,以(x ,y )为坐标的点落在直线2x -y =1上的概率为( )
A.
112 B.19 C.536 D.1
6
解析:先后掷两次骰子,共有6×6=36种不同结果.而以(x ,y )为坐标的点落在直线2x -y =1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=1
12
.
答案:A
4.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤1
2”的概率,
则( )
A .p 1<p 2<1
2
B .p 2<12<p 1
C.1
2
<p 2<p 1 D .p 1<12
<p 2
解析:(x ,y )构成的区域是边长为1的正方形及其内部,其中满足x +y ≤1
2
的区域如图①中阴影部分所
示,所以p 1=12×12×121×1=1
8
.
满足“xy ≤1
2
”的区域如图②中阴影部分所示.
图① 图②
所以p 2=
S 1+S 2
1×1=S 1+S 2>1
2
, 因此p 1<1
2<p 2.
答案:D
5.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为(
)
A .93
B .123
C .137
D .167
解析:由题干扇形统计图可得该校女教师人数为:110×70%+150×(1-60%)=137. 答案:C
6.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )
A .p 1=p 2<p 3
B .p 2=p 3<p 1
C .p 1=p 3<p 2
D .p 1=p 2=p 3
解析:由于三种抽样过程中每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3. 答案:D
7.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关
答案:C
8.亚冠联赛前某参赛队准备在甲、乙两名球员中选一人参加比赛.如图所示的茎叶图记录了一段时间内甲、乙两人训练过程中的成绩,若甲、乙两名球员的平均成绩分别是x 1,x 2,则下列结论正确的是( )
A .x 1>x 2,选甲参加更合适
B .x 1>x 2,选乙参加更合适
C .x 1=x 2,选甲参加更合适
D .x 1=x 2,选乙参加更合适
答案:A
9.某新闻媒体为了了解观众对央视《开门大吉》节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:
参考附表:
可得K 2
=110×(40×30-20×20)
2
60×50×60×50
≈7.822>6.635,
所以有99%的把握认为“喜爱《开门大吉》节目与否和性别有关”. 答案:99%
10.某单位为了了解用电量y(单位:度)与气温x (单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
由表中数据得回归直线方程y =b x +a 中的b =-2,预测当气温为-4 ℃时,用电量为________度.
答案:68
11.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.
(1)直方图中的a =________;
(2)在这购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.
解析:(1)由0.1×1.5+0.1×2.5+0.1a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3. (2)区间[0. 3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6. 因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 答案:(1)3 (2)6 000
12.一根绳子长为6米,绳子上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为________.
解析:随机选一个节点将绳子剪断共有5种情况,分别为(1,5),(2,4),(3,3),(4,2),(5,1).满足两段绳长均不小于2米的为(2,4),(3,3),(4,2),共3种情况.所以所求概率为3
5
.
答案:35
13.全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如下表所示.
(1)现从融合指数在[4,5)和[72家进行调研,求至少有1家的融合指数在[7,8]内的概率;
(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.
14.某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆.目前我国主流纯电动汽车按续航里程数R (单位:千米)分为3类,即A 类:80≤R <150,B 类:150≤R <250,C 类:
R ≥250.该公司对这140辆车的行驶总里程进行统计,结果如下表:
(1)从这(2)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C 类车中抽取了n 辆车.
①求n 的值;
②如果从这n 辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万千米的概率.
解:(1)从这140辆汽车中任取一辆,则该车行驶总里程超过10万千米的概率为P 1=20+20+20140=3
7.
(2)①依题意n =30+20
140
×14=5.
②5辆车中已行驶总里程不超过10万千米的车有3辆,记为a ,b ,c ;
5辆车中已行驶总里程超过10万千米的有2辆,记为m,n.
“从5辆车中随机选取两辆车”的所有选法共10种:ab,ac,am,an,bc,bm,bn,cm,cn,mn. “从5辆车中随机选取两辆车,恰有一辆车行驶里程超过10万千米”的选法共6种:am,an,bm,bn,
cm,cn,则选取两辆车中恰有一辆车行驶里程超过10万千米的概率P2=6
10=
3 5
.
15.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?。