描述两相湍流的二阶动量模型
- 格式:pdf
- 大小:596.91 KB
- 文档页数:10
湍流模型介绍因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。
在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。
FLUENT 中采用的湍流模拟方法包括Spalart-Allmaras模型、standard(标准)k −ε模型、RNG(重整化群)k −ε模型、Realizable(现实)k −ε模型、v2 −f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。
7.2.1 雷诺平均与大涡模拟的对比因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。
这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。
雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。
湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。
在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。
根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。
FLUENT 中使用的三种k −ε模型、Spalart-Allmaras 模型、k −ω模型及雷诺应力模型RSM)等都属于湍流模式理论。
大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。
第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图第二节,平均量输运方程包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。
对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。
化工装置中的两相流模型的建立摘要:通过文献调研,本文重点分析了大涡模型在离心泵两相流中的应用。
较为详细的概述了模型的建立以及边界条件的确定和求解方法。
关键词:文献调研、大涡模型、边界条件前言两相流动是流体力学中一门重要的分支学科,它在很多现代工程技术甚至医学中得到广泛的应用。
可以认为,绝大多数的流动都是多相流动,纯粹的单相流动只是个别情况。
降雾,下雨、下冰雹、云层流动、流沙、尘暴等是自然界中两相流动的一些例子。
各种发动机和窖炉中的喷雾燃烧、核反应堆的冷却、宇航飞行器的两相绕流、含铝推进剂固体火箭发动机中的燃气流动、石油和天然气的开采和输运、热力设备与制冷系统的工作过程、化学工艺中的流态化、吸收、蒸发、凝结和化学反应过程、采矿和冶金过程中的旋流分离和输运、气力和液力输送、煤的气化和液化、煤粉和煤浆燃烧、空气和水的污染、环保、粉尘爆炸、血液的循环与凝固、水利工程中的泥沙运动和高速渗气流等工程实际问题无不与两相流动有关。
离心泵是化工生产中最常见的装置之一,泵内流体的运动以及流体对泵的的磨蚀尤为突出,而两相流动的研究就是为设计泵以及如何防止这些机械磨蚀产生的基础和关键性的内容。
近几年,两相流动己发展到与可压缩流体力学及边界层理论有同等重要的地位。
因此固液两相流动及多相流动的研究不仅对流体力学的发展,而且对解决工程中的实际问题具有重大的理论价值和实际意义。
下面就离心泵叶轮内高浓度液-固两相湍流的大涡模拟为例阐述化工装置中两相流数学模型的建立、边界条件的确定以及求解方法的选择。
湍流大涡数值模拟(LES)是有别于直接数值模拟和雷诺平均模拟的一种数值模拟手段。
利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。
1 大涡模拟1.1 大涡模拟的基本思想湍流运动是由许多尺度不同的旋涡组成的。
湍流的数学模型第五讲流体仿真与应用◆湍流认识19世纪,一般都认为湍流是一种完全不规则的随机运动,Reynolds最初将这种流动现象称之为摇摆流(sinuous motion),其后Kelvin将其改名为湍流(turbulence),这个名字一直沿用至今。
◆湍流物理特征湍流由各种不同尺度的涡旋叠加而成,其中最大涡尺度与流动环境密切相关,最小涡尺度由粘性确定;流体在运动过程中,涡旋不断破碎、合并,流体质点轨迹不断变化;在某些情况下,流场做完全随机的运动,在另一些情况下,流场随机运动和拟序运动并存。
“随机”和“脉动”是湍流流场的重要的物理特征。
▼不可压缩时均运动控制方程组之所以出现方程组出现不封闭(需求解的未知函数较方程数多),在于方程中出现了湍流脉动值的雷诺应力项。
要使方程组封闭,必须对雷诺应力做出某些假定,即建立应力的表达式(或者引入新的湍流方程),通过这此表达式把湍流的脉动值与时均值等联系起来。
基于某些假定所得出的湍流控制方程,称为湍流模型。
湍流模型雷诺应力模型雷诺应力方程模型代数应力方程模型两一零方程模型方程模型方程模型湍动粘度类模型◆雷诺应力类模型这个模型的特点是直接构建表示雷诺应力的补充方程,然后联立求解湍流时均运动控制方程组。
▼雷诺应力方程是微分形式的,称为雷诺应力方程模型。
▼若将雷诺应力方程的微分形式简化为代数方程的形式,则称为代数应力方程模型。
▼一方程模型一方程模型考虑到湍流的对流输运和扩散输运,因此比零方程模型更为合理。
但是,一方程模型中如何定长度比尺仍是不容易决定的问题,因此在实际工程计算很少应用。
两方程模型是指补充2个微分方程使湍流时均控制方程组封闭的一类处理方法。
▼二方程模型两方程模型中标准模型及各种改进模型在工程中获得了最广泛的应用。
εκ−▼标准两方程模型εκ−○标准两方程模型常数取值εκ−▼标准模型的控制方程εκ−▼标准模型的适应性εκ−①模型中的相关系数,主要根据一些特定条件下的试验结果而确定的。