空间向量的直角坐标及其运算
- 格式:pptx
- 大小:3.69 MB
- 文档页数:25
空间向量的坐标表示与计算空间向量是三维空间中的一个重要概念,可以用来表示空间中的一个点或者空间中的两个点之间的位移向量。
为了方便计算和表示,我们可以使用坐标表示来描述和计算空间向量。
一、空间向量的坐标表示在三维坐标系中,可以使用三个坐标轴(通常是x轴、y轴、z轴)来表示一个空间向量的坐标。
这三个坐标轴是相互垂直的,构成一个直角坐标系。
对于一个空间向量v,可以使用v的起点在坐标原点的坐标表示来表示该向量。
假设v的坐标表示为(x, y, z),其中x、y、z分别表示v在x轴、y轴、z轴上的坐标值。
例如,对于一个空间向量v,如果它的起点在坐标原点,终点的坐标分别为(3, 4, 5),那么可以表示为v = (3, 4, 5)。
二、空间向量的计算1. 向量的加法空间向量的加法是指将两个向量相加得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的和向量c的坐标表示为(c1, c2, c3),其中c1 = a1 + b1,c2 = a2 + b2,c3 = a3 + b3。
+ b的坐标表示为(c1, c2, c3) = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。
2. 向量的减法空间向量的减法是指将一个向量减去另一个向量得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的差向量c的坐标表示为(c1, c2, c3),其中c1 = a1 - b1,c2 =a2 - b2,c3 = a3 - b3。
例如,对于向量a = (1, 2, 3)和向量b = (4, 5, 6),它们的差向量c = a - b的坐标表示为(c1, c2, c3) = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。
3. 向量的数量积空间向量的数量积是指将两个向量相乘得到一个标量(即一个数)。
课 题:9.6.1空间向量的直角坐标及其运算教学目的:1.掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; 2.掌握空间向量坐标运算的规律;3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。
教学重点:空间右手直角坐标系,向量的坐标运算。
教学难点:空间向量的坐标的确定及运算。
授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:本节有两个知识点:向量和点的直角坐标及向量的坐标运算、夹角和距离公式。
这一小节,我们在直角坐标系下,使向量运算完全坐标化。
去掉基底,使空间一个向量对应一个三维数组,这样使向量运算更加方便。
在上一小节已学习向量运算的基础上,把向量运算完全坐标化,对学生已不会感到抽象和困难。
在第2个知识点中,我们给出空间解析几何两个最基本的公式:夹角和距离公式。
在这个知识点中,作为向量坐标计算的例题,还顺便证明了直线与平面垂直的“性质定理”。
通过解一些立体几何的应用题,就可为学生今后进一步学习空间解析几何、高维向量和矩阵打下基础。
要求学生理解空间向量坐标的概念,掌握空间向量的坐标运算,掌握两点的距离公式。
掌握直线垂直于平面的性质定理。
教学过程:一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x 、y ,使得j y i x a+=把),(y x 叫做向量a的(直角)坐标,记作),(y x a =,其中x 叫做a 在x 轴上的坐标,y 叫做a在y 轴上的坐标,特别地,)0,1(=i,)1,0(=j ,)0,0(0= 。
2.平面向量的坐标运算若),(11y x a =,),(22y x b = ,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=。
课 题:9.6空间向量的直角坐标及其运算 (三)教学目的:1.进一步掌握空间向量的夹角、距离等概念,并能熟练运用;2.能综合运用向量的数量积知识解决有关立体几何问题;3.了解平面法向量的概念教学重点:向量的数量积的综合运用 教学难点:向量的数量积的综合运用 授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k,以点O 为原点,分别以,,i j k的方向为正方向建立三条数轴:x y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zO x 平面; 2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使O A xi yj z k =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律:(1)若123(,,)a a a a = ,123(,,)b b b b = ,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++ , 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a = ,123(,,)b b b b =,则||a ==||b ==.5.夹角公式:cos ||||a ba b a b ⋅⋅==⋅6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB ==,或,A B d =二、讲解范例:例1 求证:如果两条直线同垂直于一个平面,则这两条直线平行已知:直线O A α⊥于O ,B D α⊥于B . 求证://O A B D .证明:以O 为原点,射线O A 为非负z 轴,建立空间直角坐标系O xyz -,,,i j k分别为沿x 轴,y 轴,z 轴的坐标向量,设(,,)B D x y z =,∵B D α⊥,∴BD i ⊥ ,BD j ⊥,(,,)(1,0,0)0BD i x y z x ⋅=⋅==, (,,)(0,1,0)0BD j x y z y ⋅=⋅==,∴(0,0,)BD z =,即BD z k = ,又知O ,B 为两个不同的点,∴//B D O A .点评:如果表示向量a 的有向线段所在直线垂直于平面α,记作a α⊥,此时向量a叫做平面α的法向量.例2.在棱长为1的正方体1111ABCD A B C D -中,,E F 分别是1,DD DB 中点,G 在棱C D 上,14C G CD =,H 是1C G 的中点,(1)求证:1EF B C ⊥;(2)求E F 与1C G 所成的角的余弦; (3)求F H 的长解:如图以D 为原点建立直角坐标系D xyz -, 则1(1,1,1)B ,(0,1,0)C ,1(0,0,)2E ,11(,,0)22F ,3(0,,0)4G ,1(0,1,1)C ,71(0,,)82H ,(1)111(,,)222E F =- ,1(1,0,1)B C =-- ,∴1111(,,)(1,0,1)0222E F B C ⋅=-⋅--= , ∴1EF B C ⊥.(2)∵11(0,,1)4C G =-- ,∴111113(,,)(0,,1)22248E F C G⋅=-⋅--= ,||2EF ==,1||4C G ==,∴13cos(,)1724EF C G ==,∴E F 与1C G所成的角的余弦17.(3)∵131(,,)282F H =- ,∴||8FH == .例3.已知点P 是平行四边形A B C D 所在平面外一点,如果(2,1,4)AB =--,(4,2,0)A D = ,(1,2,1)AP =--(1)求证:AP是平面A B C D 的法向量;(2)求平行四边形A B C D 的面积.(1)证明:∵(1,2,1)(2,1,4)0AP AB ⋅=--⋅--=, (1,2,1)(4,2,0)0AP AD ⋅=--⋅=,∴AP AB ⊥,AP AD ⊥,又AB AD A = ,AP ⊥平面A B C D ,∴AP是平面A B C D 的法向量. (2)||AB ==||AD ==,∴(2,1,4)(4,2,0)6AB AD ⋅=--⋅=,∴cos(,)105A B A D ==,∴sin BAD ∠==∴||||sin ABCDS AB AD BAD =⋅∠=例4 在长方体ABCD -A 1B 1C 1D 1中,AB =a ,BC =b ,AA 1=c ,求异面直线BD 1和B 1C 所成角的余弦值分析一:利用11BB BC BA BD ++=11BB BC C B -=,以及数量积的定义,可求出cos <C B BD 11,>,从而得到异面直线BD 1和B 1C 所成角的余弦值分析二:建立空间直角坐标系,利用向量,且将向量的 运算转化为实数(坐标)的运算,以达到证明的目的解:建立如图所示空间直角坐标系,使D 为坐标原点, 则B(b,a,0),D 1(0,0,c),B 1(b,a,c),C(0,a,0) ),0,(),,,(11c b C B c a b BD --=--=∴22211)(0)()(c b c c a b C B BD -=-⋅+⋅-+-=⋅∴))((cos ,||,||2222222112212221c b c b a cb c b C B c a b BD +++-==+=++=设异面直线BD 1和B 1C 所成角为θ,则cos 22=θ三、课堂练习:1 设231(,,)a a a a = ,231(,,)b b b b = ,且a b ≠ ,记||a b m -=,求a b -与x 轴正方向的夹角的余弦值解:取x 轴正方向的任一向量(,0,0)c x =,设所求夹角为α, ∵22331111()(,,)(,0,0)()a b c a b a b a b x a b x -⋅=---⋅=-∴1111()()cos ||||a b c a b x a b m x m a b c α-⋅--===-⋅ ,即为所求 2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___解: (2,4,0),(1,3,0),BA BC =--=-cos ,2||||BA BC BA BC BA BC ⋅∴===-∴∠ABC =45°3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a的坐标分析:⑴21cos ),2,3,1(),3,1,2(==∠∴-=--=BAC AC AB∴∠BAC =60°,3760sin ||||==∴ AC AB S ⑵设a=(x,y,z),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a 解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a=(-1,-1,-1). 四、小结 :在计算和证明立体几何问题时,如果能够在原图中建立适当的空间直角坐标系,将图形中有关量用坐标来表示,利用空间向量的坐标运算来处理,则往往可以在很大程度上降低对空间相象的要求;求向量坐标的常用方法是先设出向量坐标,再待定系数 五、课后作业:六、板书设计(略)七、课后记:。
空间向量的坐标和运算一、空间向量的坐标和运算1.空间直角坐标系在单位正方体$oabc$-$d$′$a$′$b$′$c$′中,以$o$点为原点,分别以射线$oa$,$oc$,$od$′的方向为正方向,以线段$oa$,$oc$,$od$′的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。
这时我们说建立了一个空间直角坐标系$oxyz$,其中点$o$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。
通过每两个坐标轴的平面叫做坐标平面,分别称为$xoy$平面、$yoz$平面、$xoz$平面。
2.空间矢量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。
如果$a(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,那么$\overrightarrow{AB}=\overrightarrow{ob}-\overrightarrow{OA}$=$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。
3、空间向量的坐标运算设置$\boldsymbol(x_1,y_1,z_1)$,$\boldsymbol B(x_2,y_2,z_2)$,然后(1)$\boldsymbola+\boldsymbolb$=$(x_1+x_2,y_1+y_2,z_1+z_2)$。
(2) $\boldsymbola-\boldsymbolb$=$(x_1-x_2,y_1-y_2,z_1-z_2)$(3)$\boldsymbola·\boldsymbolb$=$x_1x_2+y_1y_2+z_1z_2$。
(4) $|\boldsymbola |=\sqrt{x^2_1+y^2_1+z^2_1}$(5)$λ\boldsymbola=(λx_1,λy_1,λz_1)$。
4.平行(共线)和垂直空间向量的充要条件设非零向量$\boldsymbola(x_1,y_1,z_1)$,$\boldsymbolb(x_2,y_2,z_2)$,则$\boldsymbola∥\boldsymbolb\leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{r})$$\boldsymbola⊥\boldsymbolb\leftrightarrow\boldsymbola·\boldsymbolb=0\leftrig htarrow$$x_1x_2+y_1y_2+z_1z_2=0$。
.空间向量的直角坐标运算律:(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)若,,则,,,,,;,.夹角公式:.(3)两点间的距离公式:若,,则或。
对于垂直问题,一般是利用进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.2.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。
3.用向量法求距离的公式设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为(如图)。
向量法在求空间角上的应用平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。
线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为。
(注意:线线角的范围[00,900])线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(如图)。
二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)利用法向量求空间距离⑴点A到平面的距离:,其中,是平面的法向量。
⑵直线与平面之间的距离:,其中,是平面的法向量。
⑶两平行平面之间的距离:,其中,是平面的法向量。
①线线平行的判定:判定定理性质定理判定定理判定定理性质定理判定定理总结:从中可以看出,一般情况下,往往借助一些“性质定理”来构造满足“判定定理”的条件。
(2)还会考查到的位置关系:异面直线的判定。
判定方法:定义(排除法与反证法)、判定定理。
二、基本例题例1已知:分析:利用线面平行的性质与平行公理。
注意严格的公理化体系的推理演绎。
说明:过l分别作平面∴l∥m同理l∥n∴m∥n又又例2. 已知:AB是异面直线a、b的公垂线段,P是AB的中点,平面经过点P且与AB垂直,设M是a上任意一点,N是b 上任意一点。