四点共圆在解题中的应用
- 格式:pdf
- 大小:604.93 KB
- 文档页数:3
四点共圆精选习题及答案作为一种古老而神秘的数学理论,圆形一直是数学家们探究和研究的对象之一。
而在圆形领域中,四点共圆更是一个受到广泛关注和深入研究的问题。
四点共圆是指在平面上给出任意四个点,能否通过一个圆将这四个点完美地围起来。
今天我们精选了几个四点共圆的习题,希望能给大家带来一些启示。
题目一:已知在平面直角坐标系中,四点 A(0,0),B(0,2),C(4,0),D(x,y)。
若四点在同一圆上,则点 D 的坐标为多少?解题思路:根据四点共圆基本知识,可以列出以下方程组:(x-2)²+y²=r²x²+(y-2)²=r²(x-4)²+y²=r²x²+y²=r²将方程组联立,消去 r,最终得到 x²+y²=5²,即点 D 的坐标为(3,4)或(−3,4)。
题目二:在平面直角坐标系中,四个点 A,B,C,D 分别为(7,0),(0,7),(−7,0) 和(0,−7)。
请证明:四点共圆。
解题思路:根据四点共圆定理,四个点共圆当且仅当它们构成的任意三角形的外接圆都存在。
可得三个三角形 ABC、ACD 和ABD 的外接圆都是以原点为圆心的半径为7 的圆,因此四点 A、B、C、D 构成的圆也一定存在。
题目三:在平面直角坐标系中,四点 A,B,C,D 分别为(−3,4),(−4,−3),(4,−3) 和(−1,−2)。
请计算过点 C 的直径的长度。
解题思路:通过计算可以知道,连接点 C 和其他三个点构成的三角形外接圆的圆心坐标分别为(−1,−1)、(−1,0) 和 (0,1),因此过点 C 的直径所在的直线应为直线 y=x-1。
可得直线 y=x-1 与直线x=4、直线x=−3 和直线y=−3 的交点分别为 (4, 3)、(−3,−4) 和(0,−1),因此该直径的长度为√145。
用非圆二次曲线上四点共圆定理解题随着现代数学教育不断发展,许多理论中的定理和理论也不断出现,而“用非圆二次曲线上四点共圆定理”就是其中一个相当重要的内容。
这个定理的定义是:在某一个二次曲线上,若能将这条曲线上任意四点连成一个圆,则这条曲线必定是一条非圆二次曲线。
下面就来探讨下这个定理的证明。
假设二次曲线上四点能够形成一个圆,其中心为$O(x_o,y_o)$,半径为$R$,四点为$A(x_1,y_1)$,$B(x_2,y_2)$,$C(x_3,y_3)$,$D(x_4,y_4)$。
那么可以得到:$${left| overrightarrow {OA} right|} ^2 = {R^2} , {left| overrightarrow {OB} right|} ^2 = {R^2} , {left| overrightarrow {OC} right|} ^2 = {R^2} , {left| overrightarrow {OD} right|} ^2 = {R^2}$$因此,我们可以得到:$$begin{array}{l}(x_1-x_o)^2 + (y_1-y_o)^2 = R^2(x_2-x_o)^2 + (y_2-y_o)^2 = R^2(x_3-x_o)^2 + (y_3-y_o)^2 = R^2(x_4-x_o)^2 + (y_4-y_o)^2 = R^2end{array}$$同时,我们知道,任意一条二次曲线都可以用一般形式表达,即:$$ ax^2 + bxy + cy^2 + dx + ey + f = 0$$由此,我们可以用4个方程和4个未知数$x_o, y_o, a, b, c, d, e, f$来求解这条曲线,其中,$x_o,y_o$分别为曲线上四点的共圆中心,而$a,b,c,d,e,f$是曲线的参数,我们可以通过求解它们的值来确定曲线的位置和形状。
因此,若两条曲线的参数相同,那么它们就是一条曲线;若不同,则不是一条曲线。
4点共圆判定方法一、四点共圆判定方法的重要性。
1.1 四点共圆在几何学习中是一个非常有趣且重要的概念。
就像拼图中的关键一块,它能把看似分散的点联系起来。
在很多几何问题里,一旦发现四点共圆,就如同找到了打开宝藏的钥匙,能让解题变得轻松许多。
1.2 它在实际生活中的应用也不少。
比如说建筑设计中,确定某些点是否共圆有助于构建稳定的结构,这就好比搭积木时找到合适的组合方式,能让整个建筑稳稳当当的。
二、判定方法。
2.1 首先是对角互补法。
如果四边形的对角互补,那么这四个点共圆。
这就像两个人合作,一个人的不足由另一个人来补充,达到一种完美的平衡。
比如说在一个四边形ABCD中,∠A + ∠C = 180°,∠B + ∠D = 180°,那这四个点A、B、C、D就是共圆的。
这是最基本也是最常用的判定方法,就像家常便饭一样常见。
2.2 同旁张角相等法。
如果在一条线段同侧的两点对这条线段所张的角相等,那么这四个点共圆。
这有点像两个人看同一样东西的角度相同,那他们就处在同一个“圈子”里。
例如有线段AB,点C和点D在AB的同侧,若∠ACB = ∠ADB,那么A、B、C、D四点共圆。
这个方法就像是一个独特的技巧,在一些特定的几何图形中能发挥大作用。
2.3 托勒密定理逆定理法。
托勒密定理大家可能有所耳闻,它的逆定理也能用来判定四点共圆。
如果对于四边形ABCD,满足AB×CD + AD×BC = AC×BD,那么这四个点共圆。
这就像是一个复杂的密码锁,当满足这个等式关系时,就相当于密码正确,四个点就共圆了。
不过这个方法相对来说计算量可能会大一些,就像走一条有点崎岖的路,但如果能掌握好,也是很厉害的。
三、实际应用中的思考。
3.1 在做几何题的时候,不要死盯着一种判定方法。
要像个灵活的小机灵鬼一样,根据题目给出的条件,从不同的角度去尝试。
有时候可能一眼看不出来四个点共圆,需要我们去挖掘隐藏的条件。
四点共圆四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
证明四点共圆有下述一些基本方法:【方法1】从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距。
【方法2 】如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。
)【方法3 】把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.【方法4】把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆。
【方法5】证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.【方法6】根据托勒密定理的逆定理,在四边形ABCD中,若AC*BD=AB*CD+AD*BC,那么A,B,C,D四点共圆。
或根据西姆松定理的逆定理证四点共圆。
【方法7】证明五点或五点以上的点共圆,可以分别证各四点共圆,且四点中有三点相同。
【方法8】证连结各点所得凸多边形与某一圆内接凸多边形相似。
上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这8种基本方法中选择一种证法,给予证明.一.某些知识的补充1.已知:ABCD共圆,AB中点为E、CD中点为F,EF中点为G,过E点分别作AD、BC的垂线,垂足为H、I求证:GH=GI首先可这样转化图形:作E点关于AD、BC边的轴对称点S、T,显然I、H分别是ES、ET中点。
专题07四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。
相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。
本文主要介绍四点共圆的四种重要模型。
四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。
这也是圆的基本定义,到定点的距离等于定长点的集合。
条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。
例1、(2023•连云港期中)如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.【分析】根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.【详解】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故答案为:140°.【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.例2.(2022·安徽合肥·校考一模)如图,O 是AB 的中点,点B ,C ,D 到点O 的距离相等,连接AC BD ,.下列结论不一定成立的是()A .12∠=∠B .3=4∠∠C .180ABC ADC ∠+∠=︒D .AC 平分BAD∠【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD ===.即点A 、B 、C 、D 都在圆O 上.A .∵AB AB =,∴12∠=∠,故A 不符合题意;B .∵BC BC =,∴3=4∠∠,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ∠+∠=︒,故C 不符合题意;D .∵BC 和CD 不一定相等,∴BAC ∠和DAC ∠不一定相等,∴AC 不一定平分BAD ∠,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.例3.(2023·陕西·九年级期中)如图,已知AB=AC=AD ,∠CBD=2∠BDC ,∠BAC=44°,则∠CAD 的度数为()A .68°B .88°C .90°D .112°【答案】B 【详解】试题分析:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.根据等腰三角形两底角相等求出∠ABC=∠ACB ,再求出∠CBD ,然后根据∠ABD=∠ABC ﹣∠CBD 计算即可得解.如图,∵AB=AC=AD ,∴点B 、C 、D 在以点A 为圆心,以AB 的长为半径的圆上;∵∠CBD=2∠BDC ,∠CAD=2∠CBD ,∠BAC=2∠BDC ,∴∠CAD=2∠BAC ,而∠BAC=44°,∴∠CAD=88°,例4.(2022·绵阳市4模型2、定边对双直角共圆模型同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A 、B 、C 、D 四个点满足90ABD ACD ∠=∠=︒,结论:A 、B 、C 、D 四点共圆,其中AD 为直径。
第四讲 四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1 “四点共圆”作为证题目的 例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆.分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1⇒O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM=∠CBK .求证:∠DMA =∠CKB .分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC=180°,∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC .A B C K M N P Q B ′C ′A B C O O O O 123??A B C DK M ··但已证∠AMB =∠BKA , ∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK . 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D . 试证:I A I B I C I D 是矩形.分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点 共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.A BO K N CMG故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . 分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.) 3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD . (提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)A BC D E F KG ······5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。
第28讲 四点共圆问题一、解答题1.已知直线:l y x m +=交抛物线2:4C y x =于,A B 两点. (1)设直线l 与x 轴的交点为T .若,求实数m 的值;(2)若点,M N 在抛物线C 上,且关于直线l 对称,求证:四点共圆. 【答案】(1)8m =-;(2)证明见解析. 【分析】(1)设,直线方程代入抛物线方程后由判别式得m 的范围,由韦达定理得1212,y y y y +,再由向量的数乘可得122y y +=0,结合韦达定理可得12,,y y m 值;(2)设,由对称性得434y y =--,4342x m x =---.再由,M N 在抛物线上,代入变形得3y 与m 的关系,然后计算,得M A M B ⊥, 同理NA NB ⊥,得证四点共圆. 【详解】解:由得2440y y m -+=. 设,则12124,4y y y y m +==. 因为直线l 与C 相交, 所以16160,m ∆->= 得1m <.(1)由,得1220y y +=, 所以240y +=,解得24,y =- 从而18y =, 因为124,y y m =所以432,m =-解得8m =-. (2)设,因为,M N 两点关于直线y x m =+对称, 则解得434y y =--.又434322y y x x m ++=+ 于是3343422y y x x m --++=+ 解得4342x m x =---. 又点N 在抛物线上,于是233()()4442y m x --=---. 因为2334,y x =所以23341640y y m =+++, 于是222233121323()()(-)(-)4444y y y y y y y y =--()()132********()1616y y y y y y y y y y --⎡⎤=++++⎣⎦ ()()2231333404()1616y y y y y m y --==+++ 因此M A M B ⊥, 同理,NA NB ⊥于是点,M N 在以AB 为直径的圆上, 即四点共圆. 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,如设交点坐标为,直线方程代入抛物线方程后应用韦达定理可得1212,y y y y +,再利用向量的线性运算求得12,y y 关系,从而可求得12,,y y m 值.2.已知椭圆22:14x C y +=上三点、M 、B 与原点O 构成一个平行四边形AMBO .(1)若点B 是椭圆C 的左顶点,求点M 的坐标; (2)若、M 、B 、O 四点共圆,求直线AB 的斜率.【答案】(1);(2). 【分析】(1)由已知可得,由//AM BO ,且AM BO =,设, 代入椭圆方程解方程即可得解;(2)因为、M 、B 、O 四点共圆,则平行四边形AMBO 是矩形且OA OB ⊥,设直线AB 的方程为y kx m =+,与椭圆方程联立,根据韦达定理代入 12120OA OB x x y y →→⋅=+=,化简计算求解即可.【详解】解析:(1)如图所示:因为,四边形AMBO 为平行四边形, 所以//AM BO ,且2AM BO ==. 设点,则因为点M 、A 在椭圆C 上,所以,解得,所以1,2M ⎛-± ⎝⎭.(2)因为直线AB 的斜率存在, 所以设直线AB 的方程为y kx m =+,()11,A x y ,.由消去y 得,则有,21224414m x x k-=+.因为平行四边形AMBO , 所以()1212,OM OA OB x x y y →→→=+=++.因为,所以,所以.因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程化得22441m k =+.① 因为A 、M 、B 、O 四点共圆,所以平行四边形AMBO 是矩形, 且OA OB ⊥,所以12120OA OB x x y y →→⋅=+=.因为,所以22212122244401414m m k x x y y k k--+=+=++,化得22544m k =+.②由①②解得2114k =,23m =,此时>0∆,因此2k =±.所以所求直线AB 的斜率为. 【点睛】本题主要考查了联立直线与椭圆的方程利用韦达定理列式表达斜率以及垂直的方法进而代入求解的问题,考查计算能力和逻辑推理能力,属于难题.3.已知抛物线P :22y px =(0p >)上的点到其焦点的距离为1. (Ⅰ)求p 和a 的值;(Ⅰ)求直线l :y x m =+交抛物线P 于两点A 、B ,线段AB 的垂直平分线交抛物线P 于两点C 、D ,求证:A 、B 、C 、D 四点共圆.【答案】(Ⅰ)12p =,a =;(Ⅰ)证明见解析. 【分析】(Ⅰ)根据抛物线的定义可得点到其焦点的距离等于该点到准线距离,即可求出p ,从而得到抛物线方程,再计算出参数a 的值;(Ⅰ)设()11,A x y ,,联立直线与抛物线方程,消元、列出韦达定理,即可求出线段AB 的中点M 的坐标,因为直线CD 为线段AB 的垂直平分线,直线CD 的方程为,设,,求出线段CD 的中点坐标,再利用勾股定理计算可得; 【详解】解:(Ⅰ)22y px =的准线为2px =-,因为点到其焦点的距离等于该点到准线距离, 所以3124p +=, 故12p =,即2y x =, 又在2y x =上,所以a =; (Ⅰ)设()11,A x y ,, 联立,得20y y m -+=, 则121y y +=,12y y m ⋅=, 且140m ->,即14m <, 则,且线段AB 中点的纵坐标为12122y y +=,则12x m =-,所以线段AB 中点为,因为直线CD 为线段AB 的垂直平分线,直线CD 的方程为, 联立,得210y y m ++-=, 设,,则341y y +=-,341y y m ⋅=-故34y D y C =-=, 线段CD 中点为, 因为, , 所以12AN CD =, 所以点A 在以CD 为直径的圆上, 同理点B 在以CD 为直径的圆上, 所以A 、B 、C 、D 四点共圆.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系; (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.4.已知直线与x 轴,y 轴分别交于A ,B ,线段AB 的中垂线2l 与抛物线()2:20E y px p =>有两个不同的交点C 、D . (1)求p 的取值范围;(2)是否存在p ,使得A ,B ,C ,D 四点共圆,若存在,请求出p 的值,若不存在,请说明理由. 【答案】(1)(2)存在,5p = 【分析】(1)求出,A B 两点坐标,得出其中垂线方程为380x y ++=,与抛物线方程联立根据0∆>即可得结果;(2)设,,线段CD 的中点为,将(1)和韦达定理可得,CD =征得2214MA CD =,代入两点间距离公式可解得p 的值. 【详解】(1)因为直线与x 轴,y 轴分别交于A ,B . 所以,,所以线段AB 的中点为,3AB k =, 所以线段AB 的中垂线2l 的方程为()1313y x +=--,即380x y ++=. 将38x y =--代入()2:20E y px p =>,得26160y py p ++=,因为2l 与E 有两个不同的交点C ,D . 所以2364160p p ∆=-⨯>, 又0p >,所以169p >,即p 的取值范围为. (2)若A ,B ,C ,D 四点共圆,由对称性可知,圆心应为线段CD 的中点, 设,,线段CD 的中点为, 则,所以12032y y y p +==-,003898x y p =--=-,CD ==若A ,B ,C ,D 四点共圆,则12MA CD =,即2214MA CD =, 所以()()2220012409164x y p p -+=⨯-. 所以,解得5p =, 又5p =满足169p >,所以存在5p =,使得A ,B ,C ,D 四点共圆. 【点睛】本题主要考查了直线与抛物线的位置关系,圆内接四边形的特征,考查了学生的计算能力,属于中档题. 5.已知斜率为k 的直线交椭圆()2230x y λλ+=>于A ,B 两点,AB 的垂直平分线与椭圆交于C ,D 两点,点是线段AB 的中点.(1)若03y =,求直线AB 的方程以及λ的取值范围;(2)不管λ怎么变化,都有A ,B ,C ,D 四点共圆,求0y 的取值范围. 【答案】(1)40x y +-=,12λ>;(2). 【分析】(1)将直线AB 的方程()13y k x =-+代入椭圆方程223x y λ+=,再利用根与系数的关系可得,从而可求出k 的值,进而可得到直线AB 的方程,由判别式大于零可求出λ的取值范围;(2)设直线AB 的方程为,代入椭圆方程中,利用根与系数的关系,再利用弦长公式表示出AB ,由于DC 是AB 的垂直平分线,所以同理可表示DC 的长,求出CD 中点P 的横坐标,则可求出点P 到AB 的距离d ,由A ,B ,C ,D 四点共圆,将AB ,DC ,d 代入化简可得,从而可求出k 的值,进而可求得0y 【详解】 设()11,A x y ,.(1)当03y =时,直线AB 的方程为()13y k x =-+, 将AB 方程代入223x y λ+=得:()()()22232330kxk k x k λ++-+--=.①由,解得1k =-,此时AB 的方程为40x y +-=. 将1k =-代入①,得. 由,解得12λ>.(2)设直线AB 的方程为, 将方程代入223x y λ+=得:.② 由题意,即03ky -=.12AB x =-=, 同理得,所以CD 中点P 的横坐标,点P 到AB 的距离d1-=由A ,B ,C ,D 四点共圆,即()()2222222211912133313kk k k k k λλ⎛⎫++⎛⎫⎡⎤-++=--+ ⎪ ⎪⎣⎦+⎝⎭⎝⎭+,③ 不管λ怎么变化,都有A ,B ,C ,D 四点共圆,即上式恒成立,所以,解得, 此时③式成立.代入②,由0∆>得12λ>. 所以0y 的取值范围为. 【点睛】关键点点睛:此题考查直线与椭圆的位置关系,考查计算求解能力,解题的关键是由A ,B ,C ,D 四点共圆,将AB ,DC ,d 代入化简可得,从而可求出k 的值,进而可求得0y ,考查数学转化思想,属于较难题6.已知椭圆22221x y a b+=(0)a b >>的左,右焦点分别为1F ,2F ,且126F F ||=,直线y kx =与椭圆交于,B 两点.(Ⅰ)若△12AF F 的周长为16,求椭圆的标准方程;(Ⅰ,且,B , 1F ,2F 四点共圆,求椭圆离心率e 的值;(Ⅰ)在(Ⅰ)的条件下,设00(,)P x y 为椭圆上一点,且直线PA 的斜率,试求直线PB 的斜率2k 的取值范围.【答案】(Ⅰ(Ⅰ)23=e .(Ⅰ【解析】试题解析:(Ⅰ)由题意得3c =, 根据2216a c +=,得5a =.结合222a b c =+,解得2225,16a b ==(Ⅰ)(解法一)由由AB 、EF 互相平分且共圆,易知,22AF BF ⊥, 因为,, 所以.即 128x x =-,所以有结合229b a +=.解得212a =,所以离心率 (若设相应给分)(解法二)设)(11,y x A ,又AB 、EF 互相平分且共圆,所以AB 、EF 是圆的直径, 所以92121=+y x ,又由椭圆及直线方程综合可得: 前两个方程解出,将其带入第三个方程并结合,解得:122=a ,23=e .…8分 (Ⅰ)由(Ⅰ)结论,椭圆方程为,又 ,由121k -<<-考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系.7.如图,在平面直角坐标系xOy 中,已知椭圆的右焦点为F ,P 为右准线上一点.点Q 在椭圆上,且FQ FP ⊥.(1)若椭圆的离心率为12,短轴长为 (2)若在x 轴上方存在,P Q 两点,使,,,O F P Q 四点共圆,求椭圆离心率的取值范围.【答案】(1)22143x y +=; (21e <<.【分析】(1)设椭圆的焦距为2c ,由题意,可得,即可求得椭圆C 的标准方程;(2)设2(a P c,)t ,0(Q x ,0)y ,可得FPQ ∆的外接圆即为以PQ 为直径的圆200()()()()0a x x x y t y y c--+--=,可得20a x c c =-,根据点P ,Q 均在x 轴上方,可得210e e +->,解得即可;【详解】解:(1)设椭圆的焦距为2c ,由题意,可得,解得2a =,b =椭圆的方程为22143x y +=,(2)设2(a P c,)t ,0(Q x ,0)y ,FP FQ ⊥,则FPQ ∆的外接圆即为以PQ 为直径的圆200()()()()0a x x x y t y y c--+--=,由题意,焦点F ,原点O 均在该圆上, ,消去0ty 可得,20a x c c∴=-,点P ,Q 均在x 轴上方,2a a c c c∴-<-<,即,210e e ∴+->,01e <<,1e <<, 故e 的范围为. 【点睛】本题考查椭圆的标准方程及简单几何性质,直线的圆锥曲线的位置关系,考查圆的方程及点到直线的距离公式,直线的斜率公式,考查计算能力,解题时要认真审题,属于中档题.8.已知抛物线2:4E y x =的焦点为F ,准线为l O ,为坐标原点,过F 的直线m 与抛物线E 交于A B 、两点,过F 且与直线m 垂直的直线n 与准线l 交于点M .(1)若直线m(2)设AB 的中点为N ,若O M N F 、、、四点共圆,求直线m 的方程.【答案】(1)或;(2)1)y x =-. 【分析】(1)由抛物线的定义建立方程即可.(2)设直线m 的方程为1x ty =+,用t 表示,M N 坐标,再结合条件得到,建立关于t 的方程即可获解. 【详解】(1)设,当1λ>时,设,则,直线m ∴直线m 的倾斜角为60︒, 由抛物线的定义,有,112λλ+∴=-,解得:3λ=, 若01λ<<时,同理可得:13λ=, ||3||AF BF ∴=或. (2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=. 设,则12124,4y y t y y +==-.由, 得,所以()221,2N t t +.因为直线m 的斜率为1t,所以直线n 的斜率为,则直线n 的方程为. 由解得(1,2)M t -.若O M N F 、、、四点共圆,再结合FN FM ⊥,得OM ON ⊥,则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得2t =±所以直线m 的方程为1)y x =-. 【点睛】(1)有些题目可以利用抛物线的定义结合几何关系建立方程获解;(2)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系. 9.如图,已知椭圆C 的方程为,c 为半焦距,椭圆C 的左、右焦点分别为12,F F ,椭圆C 的离心率为e .(1)若椭圆过点(e ,两条准线之间的距离为4b ,求椭圆C 的标准方程;(2)设直线y kx =与椭圆C 相交于,B 两点,且12,,,A F B F c ≤,试求2k 的最大值.【答案】(1)22142x y +=(2)13 【分析】(1)利用准线,以及222a b c =+求出离心率,又因为椭圆过点,确定方程.(2)将直线方程代入椭圆方程, 根据中心对称性和12,,,F B F 四点共圆,所以22AF BF ⊥. 所以三角形2ABF 是直角三角形,,根据2213e ≤<得出2k 取得最大值. 【详解】(1)因为两条准线之间的距离为4b ,所以224a b c=,又222a b c =+,故22b c =,因为222b a c =-,所以222a c c -=,解得e =, 因为椭圆C 过点,所以,故222b c ==,24a =,所以椭圆C 的标准方程为22142x y +=.(2)设,由得,解得.由椭圆的中心对称性得,12AF B AF B ∠=∠, 因为12,,,A F B F 四点共圆,所以12AF B AF B π∠+∠=, 所以22AF B π∠=,即22AF BF ⊥,所以三角形2ABF 是直角三角形,且22OF AB =,所以122|c x x =-,即22c =,故,所以()()()2222222221cac a k k a a c -+=+-,即,分离k ,e 得,,c ≤,所以()22222222213b c a c c e ≤⇔-≤⇔≤<, 令21,t e =-则,所以2221t k t =+,令,则()2211(0)21213t k t t t t t ==-≤<++,易得当103t -≤<,()k t 单调递减, 所以13t =-时,()k t 取最大值,即2k 取得最大值为13. 【点睛】本题考查椭圆方程,直线与椭圆的位置关系,含参分式的最值,属于难题.10.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0)经过点(﹣2,0)和,椭圆C 上三点A ,M ,B 与原点O 构成一个平行四边形AMBO .(1)求椭圆C 的方程;(2)若点B 是椭圆C 左顶点,求点M 的坐标; (3)若A ,M ,B ,O 四点共圆,求直线AB 的斜率.【答案】(1)24x +y 2=1;(2)M (-1,±);(3)±【分析】(1)将点和代入椭圆22x a+22y b =1求解即可.(2)根据平行四边形AMBO 可知AM ∥BO ,且AM =BO =2.再设点M (x 0,y 0),则A (x 0+2,y 0),代入椭圆C 求解即可. (3) 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB ,再联立直线与椭圆的方程,结合韦达定理代入OA ·OB =x 1x 2+y 1y 2=0求解即可. 【详解】(1)因为椭圆22x a+22y b =1(a >b >0)过点和,所以a =2,21a +234b =1,解得b 2=1,所以椭圆C 的方程为24x+y 2=1.(2)因为B 为左顶点,所以B (-2,0).因为四边形AMBO 为平行四边形,所以AM ∥BO ,且AM =BO =2.设点M (x 0,y 0),则A (x 0+2,y 0).因为点M ,A 在椭圆C 上,所以解得所以M (-1,±).(3)因为直线AB 的斜率存在,所以设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2). 由消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0,则有x 1+x 2=,x 1x 2=224414m k-+. 因为平行四边形AMBO ,所以OM =OA +OB =(x 1+x 2,y 1+y 2). 因为x 1+x 2=,所以y 1+y 2=k (x 1+x 2)+2m =k ·+2m =,所以M (,).因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程,化得4m 2=4k 2+1.① 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB , 所以OA ·OB =x 1x 2+y 1y 2=0.因为y 1y 2=(kx 1+m )(kx 1+m )=k 2x 1x 2+km (x 1+x 2)+m 2=,所以x 1x 2+y 1y 2=224414m k-++=0,化得5m 2=4k 2+4.② 由①②解得k 2=,m 2=3,此时△>0,因此k =±. 所以所求直线AB 的斜率为±. 【点睛】本题主要考查了椭圆方程的基本求法,同时也考查了联立直线与椭圆的方程,利用韦达定理列式表达斜率以及垂直的方法,进而代入求解的问题.属于难题.11.如图,在平面直角坐标系xOy 中,已知P 为椭圆上异于长轴端点的一点,过P 与x 轴平行的直线交椭圆C 的两条准线于点1T ,2T ,直线,交于点Q .(1)若与12QF F ∆的面积相等,求椭圆C 的离心率; (2)若126F F =,12503TT =. ①求椭圆C 的标准方程;②试判断点P ,1F ,Q ,2F 是否四点共圆,并说明理由.【答案】(1);(2)①2212516x y +=; ②P ,1F ,Q ,2F 四点共圆,理由见解析.(1)设()()000,0P x y y ≠,,可表示出直线的方程,从而求得Q 点坐标;根据三角形面积相等可构造关于,a c 的齐次方程,进而求得离心率;(2)①根据126F F =,12503TT =和椭圆,,a b c 的关系,可求得,,a b c 的值,进而得到椭圆方程; ②设过点Q ,1F ,2F 三点的圆的方程为()2229x y s s +-=+,代入Q 点坐标可求得方程为;验证可知P点坐标满足方程,由此得到四点共圆. 【详解】设()()000,0P x y y ≠,,, (1)由题意得:,.直线的方程为:,直线的方程为:, 将直线与联立可得:,即点.与12QF F ∆的面积相等, ()2000220c y y y c a ∴=-≠-, 2221c c a ∴=--,c e a ∴==,即椭圆C 的离心率为. (2)①126F F =,12503TT =,26c ∴=,, 解得:3c =,225a =,22216b a c ∴=-=,以椭圆C 的标准方程为2212516x y +=. ②由①知:,,.设过点Q ,1F ,2F 三点的圆的方程为()2229x y s s +-=+,即2229x y sy +-=.将代入该方程得:,过Q ,1F ,2F 三点的圆的方程为:, 将代入该方程左边,则22000098232y x y y y ⎛⎫+-- ⎪⎝⎭9=, 点P 也在过点Q ,1F ,2F 三点的圆上,从而点P ,1F ,Q ,2F 四点共圆.本题考查直线与椭圆的综合应用问题,涉及到椭圆离心率和标准方程的求解、四点共圆问题的证明;证明四点共圆问题的关键是能够通过三点坐标确定三点所在圆的方程,进而代入第四个点的坐标,验证其满足方程即可.12.(题文)(题文)已知点F(p2,0),直线l:x=−p2,点Μ是l上的动点,过点Μ垂直于y轴的直线与线段ΜF的垂直平分线相交于点Ν.(1)求点Ν的轨迹方程;(2)若p=2,直线y=x与点Ν的轨迹交于A、B两点,试问Ν的轨迹上是否存在两点C、D,使得A、B、C、D 四点共圆?若存在,求出圆的方程;若不存在,请说明理由.【答案】(1)y2=2px;(2)存在a>72且a≠4,a≠8的无数个圆(x−a)2+(y+a−4)2=a2+(−a+4)2满足条件.【解析】试题分析:(1)借助点在线段ΜF的中垂线上建立等式并化简即可;(2)依据题设条件建立方程,通过方程有无解的分析析作出推理和判断即可.试题解析:解: (1)设Ν(x,y),依题意,|ΝF|=|ΝΜ|,即√(x−p2)2+y2=|x+p2|.化简整理得y2=2px.(2)把y=x与y2=4x联立,解得Α(0,0),Β(4,4),则线段ΑΒ的垂直平分线方程y=−x+4若存在C、D两点,使得Α、Β、C、D四点共圆,则圆心必在直线y=−x+4上,设圆心坐标(a,−a+4),则半径r=√a2+(−a+4)2,∴圆的方程为(x−a)2+(y+a−4)2=a2+(−a+4)2,将x=y 24代入并整理得y4+(16−8a)y2+32(a−4)y=0,则y(y−4)(y2+4y+32−8a)=0,∴y1=0或y2=4或y2+4y+32−8a=0,∴y2+4y+32−8a=0应有除y1=0、y2=4之外的两个根,∴Δ>0,且32−8a≠0,42+4×4+32−8a≠0,解得a>72且a≠4,a≠8.∴存在a>72且a≠4,a≠8的无数个圆(x−a)2+(y+a−4)2=a2+(−a+4)2满足条件.考点:(1)轨迹方程与探求方法;(2)圆的方程及简单高次方程的求解等有关知识的运用.13.从抛物线24y x =上各点向x 轴作垂线段,记垂线段中点的轨迹为曲线P . (1)求曲线P 的方程,并说明曲线P 是什么曲线;(2)过点()2,0M 的直线l 交曲线P 于两点A 、B ,线段AB 的垂直平分线交曲线P 于两点C 、D ,探究是否存在直线l 使A 、B 、C 、D 四点共圆?若能,请求出圆的方程;若不能,请说明理由. 【答案】(1)曲线P 的方程为2y x =,曲线P 是焦点为的抛物线;(2)存在;圆N 的方程为或. 【分析】(1)设抛物线2y x =上的任意点为,垂线段的中点为(),x y ,根据中点坐标公式得出,代入等式2004y x =化简可得出曲线P 的方程,进而可得出曲线P 的形状;(2)设直线l 的方程为2x ty =+,将直线l 的方程与曲线P 的方程联立,列出韦达定理,求出AB ,求出线段AB 的中点的坐标,进一步求出线段AB 的中垂线CD 的方程,求出CD ,根据四点共圆结合垂径定理可得出关于t 的等式,求出t 的值,进一步可求得圆的方程,由此可得出结论. 【详解】(1)设抛物线2y x =上的任意点为,垂线段的中点为(),x y , 故,则,代入2004y x =得()224y x =,得曲线P 的方程为2y x =,所以曲线P 是焦点为的抛物线;(2)若直线l 与x 轴重合,则直线l 与曲线P 只有一个交点,不合乎题意. 设直线l 的方程为2x ty =+,根据题意知0t ≠,设()11,A x y 、, 联立,得220y ty --=,280t ∆=+>,则12y y t +=,122y y ⋅=-, 则,且线段AB 中点的纵坐标为1222y y t +=,即2121222222x x y y t t ++=⋅+=+, 所以线段AB 中点为,因为直线CD 为线段AB 的垂直平分线,可设直线CD 的方程为1x y m t=-+,则21222t t m t ⎛⎫+=-⨯+ ⎪⎝⎭,故252t m +=,联立,得()222250ty y t t +-+=, 设、,则341y y t +=-,()234152y y t ⋅=-+,故34y CD =-==,线段CD 中点为,假设A 、B 、C 、D 四点共圆,则弦AB 的中垂线与弦CD 中垂线的交点必为圆心, 因为CD 为线段AB 的中垂线,则可知弦CD 的中点N 必为圆心,则12AN CD =, 在Rt AMN △中,,所以, 则,故4228810t t t +--=,即, 解得21t =,即1t =±,所以存在直线l ,使A 、B 、C 、D 四点共圆,且圆心为弦CD 的中点N , 圆N 的方程为或. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程; (3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程. 14.在平面直角坐标系xOy 中,已知抛物线()2:20E y px p =>的焦点为F ,准线为l ,P 是抛物线上E上一点,且点P 的横坐标为2,3PF =.(1)求抛物线E 的方程;(2)过点F 的直线m 与抛物线E 交于、B 两点,过点F 且与直线m 垂直的直线n 与准线l 交于点M ,设AB 的中点为N ,若O 、M N 、F 四点共圆,求直线m 的方程.【答案】(1)24y x =(2))1y x =- 【分析】(1)由抛物线的定义可得22pPF =+,即可求出p ,从而得到抛物线方程; (2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=.设()11,A x y ,,列出韦达定理,表示出中点N 的坐标,若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥,则即可求出参数t ,从而得解; 【详解】解:(1)由抛物线定义,得232pPF =+=,解得2p =, 所以抛物线E 的方程为24y x =.(2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=. 设()11,A x y ,,则124y y t +=,124y y =-. 由2114y x =,2224y x =,得 ,所以()221,2N t t +.因为直线m 的斜率为1t,所以直线n 的斜率为,则直线n 的方程为()1y t x =--.由解得()1,2M t -.若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥,则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得2t =±所以直线m 的方程为)1y x =-. 【点睛】本题考查抛物线的定义及性质的应用,直线与抛物线综合问题,属于中档题. 15.已知椭圆C :的左、右顶点分别为A ,B ,离心率为,P 是C 上异于A ,B 的动点.(1)证明:直线AP ,BP 的斜率之积为定值,并求出该定值.(2)设||AB =AP ,BP 分别交直线l :x =3于M ,N 两点,O 为坐标原点,试问:在x 轴上是否存在定点T ,使得O ,M ,N ,T 四点共圆?若存在,求出点T 的坐标;若不存在,请说明理由. 【答案】(1)证明见解析,定值13-;(2)存在,定点11,03T ⎛⎫⎪⎝⎭.【分析】(1)由题意知(,0),(,0)A a B a -,设P (x 0,y 0),y 0≠0,则2200221x y a b+=,然后利用斜率公式求化简可得结果;(2)由题意先求出椭圆C 的方程为2213x y +=,设直线AP的方程为(y k x =,则直线BP 的方程为1(3y x k=-,直线方程与椭圆方程联立可求出(3,3)M k ,,假设△MNO 的外接圆恒过定点T (t ,0),t ≠0,然后求出线段MN 的垂直平分线所在直线的方程和线段OT 的垂直平分线所在直线的方程,从而可求出圆心,再由|OE |=|ME |,可求出t 的值,进而得O ,M ,N ,T 四点共圆 【详解】(1)由题意知(,0),(,0)A a B a -,设P (x 0,y 0),y 0≠0,则2200221x y a b+=,所以直线AP 与BP的斜率之积22022222200022222200001131x b a y y y b a c x a x a x a x a a a ⎛⎫- ⎪-⎝⎭⋅===-=-=-+--⎭=--⎝, 即直线AP ,BP 的斜率之积为定值13-. (2)存在.理由如下:由题意知2a =,得a =因为c a =c =所以b 2=1,所以椭圆C 的方程为2213x y +=.设直线AP的方程为(y k x =,则直线BP的方程为1(3y x k=-.联立可得(3,3)M k ,同理可得.假设△MNO 的外接圆恒过定点T (t ,0),t ≠0, 因为线段MN的垂直平分线所在直线的方程为y ,线段OT 的垂直平分线所在直线的方程为2tx =,所以圆心. 又|OE |=|ME |解得t =.所以存在定点11,03T ⎛⎫⎪⎝⎭,使得O ,M ,N ,T 四点共圆.【点睛】此题考查直线与椭圆的位置关系,考查椭圆中的定点问题,考查计算能力,属于中档题16.在平面直角坐标系xOy 中,已知抛物线()2:20E y px p =>的焦点为F ,准线为l ,P 是抛物线E 上一点,且点P 的横坐标为2,3PF =. (1)求抛物线E 的方程;(2)过点F 的直线m 与抛物线E 交于A 、B 两点,过点F 且与直线m 垂直的直线n 与准线l 交于点M ,设AB 的中点为N ,若O 、M 、N 、F 四点共圆,求直线m 的方程. 【答案】(1)24y x =(2))1y x =- 【分析】(1)首先根据抛物线的定义和题中条件求出抛物线的焦准距,即可得到抛物线的方程;(2)首先设直线m 的方程,然后与抛物线联立,利用韦达定理求出点N 坐标,然后设直线n 的方程求出点M 的坐标,最后利用O 、M 、N 、F 四点共圆即可求出直线m 的方程. 【详解】(1)由抛物线定义,得232pPF =+=,解得2p =, 所以抛物线F 的方程为24y x =;(2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=, 设()11,A x y ,,则124y y t +=,124y y =-, 由2114y x =,2224y x =, 得,所以()221,2N t t +,因为直线m 的斜率为1t,所以直线n 的斜率为,则直线n 的方程为()1y t x =--, 由解得()1,2M t -,若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥, 则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得t =m 的方程为)1y x =-. 【点睛】本题主要考查了抛物线的定理,直线与抛物线的交点问题,属于一般题.。
高中四点共圆知识点高中数学中,圆是一个非常重要的几何形状。
而在圆的相关知识点中,有一个特殊的性质叫做四点共圆。
本文将逐步介绍四点共圆的定义、性质以及相关解题方法。
定义四点共圆,顾名思义就是四个点共同位于同一个圆上。
形式化的定义是:对于给定的四个点A、B、C、D,如果这四个点都位于同一个圆上,那么我们就说它们四点共圆。
性质四点共圆的性质有很多,下面将介绍其中一些重要的性质。
性质1:共圆四点与圆心的关系设四点共圆的圆为O,那么O就是这个圆的圆心。
也就是说,如果四个点A、B、C、D共圆,那么它们都位于圆O上,并且O是这个圆的圆心。
性质2:共圆四点所确定的圆唯一如果四个点A、B、C、D共圆,那么它们所确定的圆是唯一的。
也就是说,不存在其他的圆可以同时包含这四个点。
性质3:四点共圆的充分必要条件四个点A、B、C、D共圆的充分必要条件是:ABCD四条弦的中垂线共点。
也就是说,如果四条弦的中垂线交于一点,那么这四个点必定共圆。
性质4:四点共圆的推论根据四点共圆的定义和性质,我们可以得到一些推论。
例如,如果一个三角形的三个顶点和三角形外接圆的圆心共圆,那么这个三角形是直角三角形。
解题方法在解决与四点共圆相关的问题时,我们可以运用以下方法:方法1:利用垂心定理垂心定理是指:对于一个三角形ABC,它的三条高线交于一点H,那么H就是这个三角形的垂心。
在解题中,我们可以使用垂心定理来判断四个点是否共圆。
方法2:利用勾股定理勾股定理是指:在一个直角三角形中,斜边的平方等于两直角边的平方和。
当我们已知一个三角形是直角三角形时,可以利用勾股定理来判断四个点是否共圆。
方法3:利用向量运算在二维平面上,我们可以使用向量运算来判断四个点是否共圆。
具体方法是,计算任意三个点所确定的两条向量,然后判断这两条向量是否垂直。
如果垂直,则四个点共圆。
总结四点共圆是高中数学中重要的几何概念之一。
通过了解四点共圆的定义、性质以及解题方法,我们可以更好地理解和应用这一知识点。