大学物理实验—不确定度
- 格式:ppt
- 大小:508.50 KB
- 文档页数:36
⼤学物理实验测量的不确定度和数据处理测量的不确定度和数据处理测量不确定度采⽤不确定度的必然性国际计量局等七个国际组织于1993年指定了具有国际指导性的“测量不确定度表⽰指南ISO 1993(E)”(以下简称《指南》)。
⼏年来国际与国内的科技⽂献开始采⽤不确定度概念,我国各个⾼校也不断开展这⽅⾯的讨论,改⾰教学内容与⽅法,以求与国际接轨。
虽然⼀些学者对《指南》的有些内容持批评态度[注1],但总的趋势是在贯彻《指南》的同时,不断改善它。
测量不确定度定义为测量结果带有的⼀个参数,⽤以表征合理赋予被测量量的分散性,它是被测量客观值在某⼀量值范围内的⼀个评定。
不确定度理论将不确定度按照测量数据的性质分类:符合统计规律的,称为A类不确定度,⽽不符合统计规律的统称为B类不确定度。
测量不确定度的理论保留系统误差的概念,也不排除误差的概念。
这⾥的误差指测量值与平均值之差或测量值与标准值(⽤更⾼级的仪器的测量值)的偏差。
测量不确定度的 B类分量仪器的最⼤允差Δ仪测量中凡是不符合统计规律的不确定度统称为B类不确定度,记为ΔB 。
它包含了由测量者估算产⽣的部分Δ估和仪器精度有限所产⽣的最⼤允差Δ仪。
Δ仪包含了仪器的系统误差,也包含了环境以及测量者⾃⾝可能出现的变化(具随机性)对测量结果的影响。
Δ仪可从仪器说明书中得到,它表征同⼀规格型号的合格产品,在正常使⽤条件下,⼀次测量可能产⽣的最⼤误差。
⼀般⽽⾔,Δ仪为仪器最⼩刻度所对应的物理量的数量级(但不同仪器差别很⼤,⼀些常⽤仪器的最⼤允差见第26页)。
测量者的估算误差Δ估测量者对被测物或对仪器⽰数判断的不确定性会产⽣估算误差Δ估。
对于有刻度的仪器仪表,通常Δ估为最⼩刻度的⼗分之⼏,⼩于Δ仪(因为最⼤允差已包含了测量者正确使⽤仪器的估算误差)。
⽐如,估读螺旋测微器最⼩刻度的⼗分之⼀为0.001毫⽶,⼩于其最⼤允差0.004毫⽶;估读钢板尺最⼩刻度的⼗分之⼀为0.1毫⽶,⼩于其最⼤允差0.15毫⽶。
大学物理实验中测量不确定度的评定方法
在大学物理实验中,测量不确定度是一项重要的任务。
不确定度
的评定方法在测量精度和准确度评估中起着至关重要的作用,以便识
别物理实验数据中的任何可能源导致的误差。
测量不确定度的评定,
可归纳为两个步骤:步骤一,识别影响测量结果的因素;步骤二,应
用不同方法子测量不确定度。
首先,确定可能影响测量结果的因素是评估不确定度的关键。
不
同的物理实验可能存在不同的变量,需要分析和识别的变量可以是无
量纲变量,比如电流、电压、时间间隔以及定量变量,如温度、湿度、压力等。
通过分析实验中所有可能影响结果的变量,可以找出误差的
源头,有助于提高测量精度。
其次,在确定影响测量结果的变量的基础上,可以采用不同的方
法来评估不确定度,并可以尝试多种评估方法,以更准确地衡量不确
定程度。
比如,可以分析设备的精度,采用估算的统计方法,以及采
用假设检验。
这些方法的使用可能会受到实验条件的限制,但是,一
旦选定了合适的方法,就可以得到非常准确的反馈,有助于准确衡量
物理实验中的不确定度。
总之,大学物理实验中测量不确定度的评定方法,主要有:识别
影响结果的变量,以及确定的基础上,选择合适的测量方法衡量不确
定程度。
只有经过科学的分析和准确的测量,才能准确衡量物理实验
数据中的不确定度。
大学物理实验-不确定度公式的计算参数假设Xi 是每次仪器测量的示值或读数X上面有一横线(x),是每次测量结果的平均值n为测量次数计算方差对同一量,进行多次计量,然后算出平均值。
对于偏离平均值的正负差值,就是其不确定度。
其差值越大,则计量的不确定度就越大。
在数理统计学上,一般用方差(S)来表示:S^2={(x1-X)^2+(x2-X)^2+(x3-X)^2……+(xn-X)^2}/(n-1)。
注:X为平均值,n为测量的次数。
方差越大,其不确定度则越大;方差越小,其不确定度就越小。
启用标准偏打开计算器> 查看(V) > 选择"科学型" > 单击计算器左边的"Sta"按钮(此时会弹出一个统计框)数据编辑(例子:数据[25,34,13])在统计框内单击"全清(A)"按钮> 返回计算器> 输入数据"25" > 单击计算器左边的"Dat"按钮> 输入数据"34" > 单击计算器左边的"Dat"按钮> 输入数据"13" > 单击计算器左边的"Dat"按钮(此时统计框已记录下数据[25,34,13])标准偏差计算平均值-- "Ave" 按钮总和-- "Sum" 按钮样本标准差[不是标准差或方差] -- "s" 按钮方差:先求出样本标准差,然后平方,除以样本数量,再乘以(样本数量减1),才得出方差标准差:将方差开方在测量过程中,各项误差合成后得到的总极限误差称为测量的不确定度,他是表示由于测量过程中各项误差影响而使测量结果不能肯定的误差范围。
测量误差=测量值-真值,测量值>真值,为正差;测量值<真值,为负差。
大学物理实验不确定度引言在进行大学物理实验时,我们经常会遇到一些测量数据需要进行分析和处理的情况。
然而,真实的物理量是由各种各样的测量误差和不确定度组成的。
因此,正确地评估和报告测量的不确定度对于得出准确的结果至关重要。
什么是不确定度不确定度是指测量结果与被测量物理量真值之间的差异度量。
它反映了测量结果的精确程度和可靠性。
测量不确定度由多种因素引起,如测量设备的精确度、实验条件的稳定性、人为误差等。
如何评估不确定度评估不确定度的方法可以分为两种:直接测量法和间接测量法。
直接测量法直接测量法是指直接对被测量物理量进行测量和记录。
在这种情况下,不确定度可以通过测量设备的精确度和重复测量来评估。
重复测量可以帮助我们确定测量结果的可靠性,进而评估不确定度的大小。
间接测量法间接测量法是指通过对几个相关的物理量进行测量,然后使用数学关系式计算所要测量的物理量。
在这种情况下,不确定度的评估需要考虑每个测量值的不确定度以及数学关系式的传递误差。
不确定度的类型不确定度可以分为两种类型:随机不确定度和系统不确定度。
随机不确定度随机不确定度是由于测量条件的变化或测量设备的随机误差引起的。
它可以通过重复测量获得一系列测量结果,并从中计算出平均值和标准偏差来评估。
系统不确定度系统不确定度是由于系统性误差或仪器固有误差引起的。
它通常不会在重复测量时得到纠正。
评估系统不确定度需要考虑实验装置的特性以及操作者的技术能力。
不确定度的表示方法表示不确定度的常见方法有两种:标准不确定度和扩展不确定度。
标准不确定度标准不确定度是测量结果不确定度的一种方法。
它表示为一个具有区间的数字,通常用测量结果的标准差表示。
标准不确定度给出了测量结果的范围,但无法确定具体的上下限。
扩展不确定度扩展不确定度是在标准不确定度的基础上,根据所选的置信度给出测量结果的范围。
它考虑了标准不确定度的不确定性,并通过乘以一系列修正因子来扩展结果。
不确定度的传递规则当使用数学关系式计算一个物理量时,我们需要考虑每个测量值的不确定度如何传递给最终结果。