大学物理实验中不确定度计算的总结
- 格式:docx
- 大小:25.60 KB
- 文档页数:2
大学物理实验教学中关于实验数据的不确定度的计算和分析作者:孙红章王翚苏向英来源:《教育教学论坛》2015年第35期摘要:本文首先讨论了大学物理实验教学中关于不确定理论中的直接测量量的A类、B类标准不确定度和合成不确定度以及间接测量量的不确定度的通常表示方法,随后推算出了几个基本物理实验中各个测量量不确定度的计算公式,对大学本科学生的物理实验教学具有指导意义。
关键词:大学物理实验教学;不确定度计算;固体密度测量;杨氏弹性模量测量;共轭法测凸透镜焦距中图分类号:G642 ; ; 文献标志码:A ; ; 文章编号:1674-9324(2015)35-0169-02现如今在大学物理实验教学中为了更加准确和精确的表示实验测量结果,常使用不确定度理论来表示实验测量结果。
[1,2]在大学物理实验教学中,不确定度的计算一直是一个难点,也是一个重点,许多本科学生因为不确定度的计算方法非常复杂,而且计算量很大,而放弃对实验数据的科学处理。
这里我们将阐述大学物理实验教学中不确定度的通常表示方法,并结合有关的基本物理实验,在课堂上用多媒体演示,使大学一年级学生很容易掌握不确定度的计算,取得了良好的教学效果。
一、不确定度理论的一般原理和计算方法[3,4]不确定度理论对于直接测量量把数据的不确定度根据数据的性质来分类,把符合正态分布统计规律的称之为A类标准不确定度,而不符合正态分布统计规律的称之为B类标准不确定度。
把两类不确定度的平方和的根称之为测量量的合成标准不确定度,或者简称为不确定度。
大学物理实验中物理量的直接测量量的平均值的标准偏差即为A类标准不确定度,它的计算公式为:t的大小与物理量的测量次数n和置信概率p有关系,置信概率p一般约定取值为68.3%,特殊情况下置信概率p取95.4%。
如果我们测量9次,置信概率取p=68.3%,那么置信因子取t=1.07。
如果我们测量5次,置信概率取p=68.3%,置信因子取t=1.14。
大物实验不确定度计算公式
在大物实验中,不确定度是一个非常重要的概念。
不确定度可以理解为测量结果与真实值之间的差异,它是一个用来描述测量精度的指标。
在实验中,我们需要计算出每个测量值的不确定度,以便更好地评估实验结果的可靠性和精确性。
下面是大物实验中常用的不确定度计算公式:
1. 算术平均值的不确定度:
其中,n表示测量次数,Δx表示每次测量值与平均值之差,s
表示样本标准差。
2. 直接测量值的不确定度:
其中,δ表示仪器误差,Δ表示读数误差,L表示仪器量程。
3. 复合测量值的不确定度:
其中,u表示单个元件的不确定度,σ表示元件间的相关系数。
在实验过程中,我们需要根据实际情况选择合适的不确定度计算公式,并根据公式计算出每个测量值的不确定度。
同时,我们还要注意将不确定度传递至最终结果中,以便更好地评估实验的可靠性和精确性。
- 1 -。
实验数据处理1. 计算三棱镜顶角及不确定度)(A u 顶角A 的计算公式: (1)自准法 )(211802121右右左左θθθθ-+--=A (2)反射法 )(12121右右左左θθθθ-+-=A其中须考虑实际转过的角度。
(3) 顶角A 的不确定度的计算公式 自准法: θθθ∆==⨯=)()()21(4)(22u u A u反射法:11()()22u A u θθ===∆2. 最小偏向角的计算及最小偏向角的不确定度 (1) 最小偏向角min δ的计算公式:)(12121min 右右左左θθθθδ-+-=(2)最小偏向角min δ的不确定度计算公式:θθθδ∆==⨯=21)(21)()41(4)(22min u u u3. 计算折射率n 以及折射率的不确定度)(n u由折射率的计算公式 A A n 21sin )(21sin min +=δ,对较厚三棱镜,可得: n蓝紫= n 绿 =由折射率的不确定度计算公式:)(2)(222)(min 2min222min δδδu A ctgA u A ctg A ctg n n u ++⎪⎭⎫ ⎝⎛+-=)()21sin(2)(21cos )()21(sin 2)21sin(min 22min 222min δδδu A A A u A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 22min 222min )21()21sin(2)(21cos )()21(sin 2)21sin(θδθδ∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A A A 仪器误差 Δθ = 2′= 5.82×10-4(rad)可得:u (n 蓝紫) = ,u (n 绿) =测得折射率n 蓝紫= ± ,n 绿 = ±数据处理注意事项与角度的不确定度有关的数值的单位应取为弧度。
大学物理实验中不确定度计算的总结
邱春蓉
(西南交通大学理学院,四川成都610031)
摘要:本文用两种树型形式总结了大学物理实验教学中直接测量量和间接测量量测量结果计
算的公式。
关键词:测量结果平均值不确定度
Abstract: The calculation of measurement results of direct measurement and indirect measurement in college physical experiment is concluded and expressed in two kinds of tree-type.
Key words: measurement results average value uncertainty
在大学物理实验课程中计算量较大的部分主要集中在测量结果中多次测量的算术平均值和平均值的不确定度的计算上。
由于计算公式适用条件涉及到测量量的分类,所以学生们常常把公式张冠李戴。
图1 按算术平均值和不确定度展开的测量结果的表示
为了方便学生理清计算思路和查阅相关公式,我用两种树型形式将测量结果的计算公式归纳总结了一下。
第一种形式是将测量结果的表示按算术平均值和平均值的不确定度进行展开,如图1所示,第二种形式是按直接测量量和间接测量量进行展开,如图2所示。
图2 按直接测量量和间接测量量展开的测量结果的表示
其中,x 和Y 分别表示直接测量量和间接测量量,Y = f (x i ), 和分别表示直接测量量和间接测量量的算术平均值,u x 和u Y 分别表示直接测量量和间接测量量的不确定度,u A 和u B 分别表示直接测量量不确定度的两类分量,A 类分量和B 类分量,∆为仪器误差限,
K =,按均匀分布处理,m 表示间接测量量中含有直接测量量的个数,n 表示某一个直接测量量的测量次数。
通过图1和图2两种形式的表示,学生在计算不确定度时就可以方便而且思路清晰地查找相应公式了。
参考文献
温诚忠等编,物理实验教程,西南交通大学出版社,1999年
x Y 3。