大学物理实验不确定度求解等
- 格式:ppt
- 大小:876.50 KB
- 文档页数:67
大学物理实验不确定度计算的研究作者:王兴福毛巍威葛智勇李三龙来源:《课程教育研究·上》2014年第11期【摘要】本文讨论了不确定度的概念和分类,分别对直接测量和间接测量中不确定度的计算进行了研究,并提出了有效数字的修约规则,为学生在物理实验时处理实验数据提供了参考。
【关键词】大学物理实验不确定度有效数字【资金项目】南京邮电大学实验室工作研究课题(2014XSG17)。
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2014)11-0179-02实验误差和数据处理是大学物理实验课程的重要学习内容,而不确定度是误差概念的升华。
在大学物理实验教学中全面采用不确定度的评定,准确地理解和掌握不确定度的概念和方法,是大学生学习大学物理实验课程的基本要求。
1.不确定度的概念不确定度是指由于测量误差的存在而对被测量值不能确定的程度,是表征被测量值的真值所处的量值范围的评定。
2.不确定度的分类按其数值评定的方法可分为两类:A类不确定度分量UA与B类不确定度分量UB,分别对应随机误差分量和未定系统误差分量。
总不确定度由A类不确定度和B类不确定度合成而来,误差一般在±U之间,用扩展不确定度评定时,在±U之外的概率不大于5%。
3.不确定度的计算依据获取数据方法的不同,测量可分为直接测量和间接测量两类。
3.1直接测量的计算3.1.1单次直接测量结果的表达在实验中有时只测一次,称为单次直接测量。
单次直接测量的测得值就作为真值的最佳估值,用仪器本身的误差限值⊿INS作为B类不确定度,单次测量不评定A类不确定度。
UB是用非统计方法评定的不确定度的分量,一般只考虑测量仪器误差或测试条件不符合要求而引起的附加误差所带来的B类分量。
对单次直接测量物理量x的测量结果写为3.1.2多次直接测量结果的表达3.2间接测量的计算间接测量的测量值是将直接测量的测量值代入公式计算得到的,由于直接测量有误差,它们必然通过函数关系传递给间接测量量,这就是误差的传递。
大学物理实验教学中关于实验数据的不确定度的计算和分析作者:孙红章王翚苏向英来源:《教育教学论坛》2015年第35期摘要:本文首先讨论了大学物理实验教学中关于不确定理论中的直接测量量的A类、B类标准不确定度和合成不确定度以及间接测量量的不确定度的通常表示方法,随后推算出了几个基本物理实验中各个测量量不确定度的计算公式,对大学本科学生的物理实验教学具有指导意义。
关键词:大学物理实验教学;不确定度计算;固体密度测量;杨氏弹性模量测量;共轭法测凸透镜焦距中图分类号:G642 ; ; 文献标志码:A ; ; 文章编号:1674-9324(2015)35-0169-02现如今在大学物理实验教学中为了更加准确和精确的表示实验测量结果,常使用不确定度理论来表示实验测量结果。
[1,2]在大学物理实验教学中,不确定度的计算一直是一个难点,也是一个重点,许多本科学生因为不确定度的计算方法非常复杂,而且计算量很大,而放弃对实验数据的科学处理。
这里我们将阐述大学物理实验教学中不确定度的通常表示方法,并结合有关的基本物理实验,在课堂上用多媒体演示,使大学一年级学生很容易掌握不确定度的计算,取得了良好的教学效果。
一、不确定度理论的一般原理和计算方法[3,4]不确定度理论对于直接测量量把数据的不确定度根据数据的性质来分类,把符合正态分布统计规律的称之为A类标准不确定度,而不符合正态分布统计规律的称之为B类标准不确定度。
把两类不确定度的平方和的根称之为测量量的合成标准不确定度,或者简称为不确定度。
大学物理实验中物理量的直接测量量的平均值的标准偏差即为A类标准不确定度,它的计算公式为:t的大小与物理量的测量次数n和置信概率p有关系,置信概率p一般约定取值为68.3%,特殊情况下置信概率p取95.4%。
如果我们测量9次,置信概率取p=68.3%,那么置信因子取t=1.07。
如果我们测量5次,置信概率取p=68.3%,置信因子取t=1.14。
⼤学物理实验测量的不确定度和数据处理测量的不确定度和数据处理测量不确定度采⽤不确定度的必然性国际计量局等七个国际组织于1993年指定了具有国际指导性的“测量不确定度表⽰指南ISO 1993(E)”(以下简称《指南》)。
⼏年来国际与国内的科技⽂献开始采⽤不确定度概念,我国各个⾼校也不断开展这⽅⾯的讨论,改⾰教学内容与⽅法,以求与国际接轨。
虽然⼀些学者对《指南》的有些内容持批评态度[注1],但总的趋势是在贯彻《指南》的同时,不断改善它。
测量不确定度定义为测量结果带有的⼀个参数,⽤以表征合理赋予被测量量的分散性,它是被测量客观值在某⼀量值范围内的⼀个评定。
不确定度理论将不确定度按照测量数据的性质分类:符合统计规律的,称为A类不确定度,⽽不符合统计规律的统称为B类不确定度。
测量不确定度的理论保留系统误差的概念,也不排除误差的概念。
这⾥的误差指测量值与平均值之差或测量值与标准值(⽤更⾼级的仪器的测量值)的偏差。
测量不确定度的 B类分量仪器的最⼤允差Δ仪测量中凡是不符合统计规律的不确定度统称为B类不确定度,记为ΔB 。
它包含了由测量者估算产⽣的部分Δ估和仪器精度有限所产⽣的最⼤允差Δ仪。
Δ仪包含了仪器的系统误差,也包含了环境以及测量者⾃⾝可能出现的变化(具随机性)对测量结果的影响。
Δ仪可从仪器说明书中得到,它表征同⼀规格型号的合格产品,在正常使⽤条件下,⼀次测量可能产⽣的最⼤误差。
⼀般⽽⾔,Δ仪为仪器最⼩刻度所对应的物理量的数量级(但不同仪器差别很⼤,⼀些常⽤仪器的最⼤允差见第26页)。
测量者的估算误差Δ估测量者对被测物或对仪器⽰数判断的不确定性会产⽣估算误差Δ估。
对于有刻度的仪器仪表,通常Δ估为最⼩刻度的⼗分之⼏,⼩于Δ仪(因为最⼤允差已包含了测量者正确使⽤仪器的估算误差)。
⽐如,估读螺旋测微器最⼩刻度的⼗分之⼀为0.001毫⽶,⼩于其最⼤允差0.004毫⽶;估读钢板尺最⼩刻度的⼗分之⼀为0.1毫⽶,⼩于其最⼤允差0.15毫⽶。
i2 n →∞ n i = 1物理实验的不确定度表示和计算方法摘 要 本文在 分析物理 实验中引入 不确定度必 要性的 基 础上, 介绍了不确定度的有关概念, 提出了不 确定度的表示 和计算方法。
关键词 物理实验; 不确定度; 置信概率0 引 言在物理实验中总是通过各种测量方法和测量仪 器对各个物理量进行测量, 但如何对测量结果的可 靠性进行评价, 一直是测量和数据处理环节的重要 问题。
过去的传统方法是用测量误差来评定测量结 果的可靠性, 而测量误差定义为测量值与真值之差, 由于真值是永远也测不到的, 所以测量误差也是一 个不可知量, 即用测量误差来评定测量结果的可靠 性是不科学的。
1980 年国际计量局提出了关于实验不确定度表示的建议书 《R ecomm endation INC -1C 19980》[ 1], 1992 年发表了 《测量不确定度表示法指南》, 在世界 范围内开展了用不确定度来评价测量结果的推广和 使用。
在此基础上, 国际理论与应用物理联合会与 国际标准化组织 ( ISO ) 等 7 个国际组织联合颁发了 《国际通用计量学基本术语》) 之后, 对物理教学中 有关 误差分析 和数据处 理方法 提出 了新的 要求。
在于某一个量值范围内的评定, 它反映了可能存在 的误差分布范围, 其大小给出了测量结果可信程度 的高低。
不确定度实际上具有非常明确的含义, 它 具有确定的量值, 其量纲与被测量的量纲相同, 但 通常总是联系于一定的概率。
不确定度一般含有多 个分量, 但按其数值的评定方法可归并成两类: A 类分量: 由测量列的统计分析评定的不确定 度分量, 即随机误差分量, 用△A 表示。
B 类分量: 由非统计方法评定的不确定度分量, 即未定系统误差分量, 用△B 表示。
合成不确定度: 为 A 类分量和 B 类分量按方差 合成原理进行合成, 用 u 表示可写为u =∑△2 + ∑△2( 1)AB总不确定度 ( 展伸不确定度) : 将合成不确定度 u 乘以一个与置信概率有关的包含因子 K p , 则得总 不确定度, 用 U 表示, U = K p u 。
实验数据处理1. 计算三棱镜顶角及不确定度)(A u 顶角A 的计算公式: (1)自准法 )(211802121右右左左θθθθ-+--=A (2)反射法 )(12121右右左左θθθθ-+-=A其中须考虑实际转过的角度。
(3) 顶角A 的不确定度的计算公式 自准法: θθθ∆==⨯=)()()21(4)(22u u A u反射法:11()()22u A u θθ===∆2. 最小偏向角的计算及最小偏向角的不确定度 (1) 最小偏向角min δ的计算公式:)(12121min 右右左左θθθθδ-+-=(2)最小偏向角min δ的不确定度计算公式:θθθδ∆==⨯=21)(21)()41(4)(22min u u u3. 计算折射率n 以及折射率的不确定度)(n u由折射率的计算公式 A A n 21sin )(21sin min +=δ,对较厚三棱镜,可得: n蓝紫= n 绿 =由折射率的不确定度计算公式:)(2)(222)(min 2min222min δδδu A ctgA u A ctg A ctg n n u ++⎪⎭⎫ ⎝⎛+-=)()21sin(2)(21cos )()21(sin 2)21sin(min 22min 222min δδδu A A A u A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 22min 222min )21()21sin(2)(21cos )()21(sin 2)21sin(θδθδ∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A A A 仪器误差 Δθ = 2′= 5.82×10-4(rad)可得:u (n 蓝紫) = ,u (n 绿) =测得折射率n 蓝紫= ± ,n 绿 = ±数据处理注意事项与角度的不确定度有关的数值的单位应取为弧度。
大学物理实验-不确定度公式的计算参数假设Xi 是每次仪器测量的示值或读数X上面有一横线(x),是每次测量结果的平均值n为测量次数计算方差对同一量,进行多次计量,然后算出平均值。
对于偏离平均值的正负差值,就是其不确定度。
其差值越大,则计量的不确定度就越大。
在数理统计学上,一般用方差(S)来表示:S^2={(x1-X)^2+(x2-X)^2+(x3-X)^2……+(xn-X)^2}/(n-1)。
注:X为平均值,n为测量的次数。
方差越大,其不确定度则越大;方差越小,其不确定度就越小。
启用标准偏打开计算器> 查看(V) > 选择"科学型" > 单击计算器左边的"Sta"按钮(此时会弹出一个统计框)数据编辑(例子:数据[25,34,13])在统计框内单击"全清(A)"按钮> 返回计算器> 输入数据"25" > 单击计算器左边的"Dat"按钮> 输入数据"34" > 单击计算器左边的"Dat"按钮> 输入数据"13" > 单击计算器左边的"Dat"按钮(此时统计框已记录下数据[25,34,13])标准偏差计算平均值-- "Ave" 按钮总和-- "Sum" 按钮样本标准差[不是标准差或方差] -- "s" 按钮方差:先求出样本标准差,然后平方,除以样本数量,再乘以(样本数量减1),才得出方差标准差:将方差开方在测量过程中,各项误差合成后得到的总极限误差称为测量的不确定度,他是表示由于测量过程中各项误差影响而使测量结果不能肯定的误差范围。
测量误差=测量值-真值,测量值>真值,为正差;测量值<真值,为负差。
大学物理实验不确定度求解等物理实验中的不确定度是指测量结果中存在的误差,可能来自于仪器、环境或人为因素。
准确地确定不确定度对于实验数据的解释和分析至关重要。
以下是一些关于大学物理实验不确定度的求解方法和注意事项。
1. 误差的类型在测量中,可能出现系统误差和随机误差。
系统误差指的是由于仪器的固有缺陷或人为因素带来的偏差,相对稳定;而随机误差则是由于人为或环境因素导致的测量结果的波动性,相对不稳定。
在求解不确定度时,需要对这两种误差进行区分,并分别处理。
2. 不确定度的定义不确定度是指测量结果中的误差范围。
它考虑了随机误差和系统误差的影响,并通过标准偏差来衡量测量结果的散布程度。
不确定度表示为一个带有误差单位的数值,如测量物理量的标准偏差为 0.1 米,则不确定度为(0.1 ± 0.001) 米。
3. 标准偏差的计算标准偏差是衡量测量结果离平均值的距离的一种方法。
它的值越小,说明测量数据越精确。
计算标准偏差的公式为:s=sqrt(sum((x-xt)^2)/n-1)其中,s 表示标准偏差,sqrt 表示开平方根,sum 表示求和,x 表示测量数据,xt 表示平均值,n 表示测量数据的个数。
4. 置信度置信度是指在保持实验误差范围内,测量结果的误差落在某一区间内的概率。
置信度通常用百分比来表示。
例如,95% 的置信度表示测量结果的误差在一定程度内可以达到95% 的概率。
计算不确定度时,需要考虑随机误差和系统误差的影响。
对于随机误差,可以采用标准偏差进行估计;对于系统误差,可以进行调整或校准。
具体的计算公式和方法,需要根据实验情况和测量器材的精度进行选择。
6. 注意事项在实验中,应该尽可能减小误差,并采取一些措施来消除系统误差。
例如,选择合适的测量仪器、重复测量多次、同一实验由多个人进行测量等。
此外,在进行实验时,还应该注意一些基本原则,如准确度、精确度、均匀性、稳定性等。
通过认真分析实验数据,可以提高物理实验的可靠性和精度,更好地满足实验目的和要求。
大学物理实验中不确定度计算的总结邱春蓉(西南交通大学理学院,四川成都610031)摘要:本文用两种树型形式总结了大学物理实验教学中直接测量量和间接测量量测量结果计算的公式。
关键词:测量结果平均值不确定度Abstract:Thecalculationofmeasurementresultsofdirectmeasurementandindirectmeasurement incollegephysicalexperimentisconcludedandexpressedintwokindsoftree-type.Keywords:measurementresultsaveragevalueuncertainty在大学物理实验课程中计算量较大的部分主要集中在测量结果中多次测量的算术平均值和平均值的不确定度的计算上。
由于计算公式适用条件涉及到测量量的分类,所以学生们常常把公式张冠李戴。
图1按算术平均值和不确定度展开的测量结果的表示为了方便学生理清计算思路和查阅相关公式,我用两种树型形式将测量结果的计算公式归纳总结了一下。
第一种形式是将测量结果的表示按算术平均值和平均值的不确定度进行展开,如图1所示,第二种形式是按直接测量量和间接测量量进行展开,如图2所示。
图2按直接测量量和间接测量量展开的测量结果的表示其中,x和Y分别表示直接测量量和间接测量量,Y=f(x i),x Y和分别表示直接测量量和间接测量量的算术平均值,u x和u Y分别表示直接测量量和间接测量量的不确定度,u A和u B分别表示直接测量量不确定度的两类分量,A类分量和B类分量,为仪3器误差限,K=,按均匀分布处理,m表示间接测量量中含有直接测量量的个数,n表示某一个直接测量量的测量次数。
通过图1和图2两种形式的表示,学生在计算不确定度时就可以方便而且思路清晰地查找相应公式了。
参考文献温诚忠等编,物理实验教程,西南交通大学出版社,1999年。