大物实验不确定度分析
- 格式:ppt
- 大小:4.12 MB
- 文档页数:15
大学物理实验教学中关于实验数据的不确定度的计算和分析作者:孙红章王翚苏向英来源:《教育教学论坛》2015年第35期摘要:本文首先讨论了大学物理实验教学中关于不确定理论中的直接测量量的A类、B类标准不确定度和合成不确定度以及间接测量量的不确定度的通常表示方法,随后推算出了几个基本物理实验中各个测量量不确定度的计算公式,对大学本科学生的物理实验教学具有指导意义。
关键词:大学物理实验教学;不确定度计算;固体密度测量;杨氏弹性模量测量;共轭法测凸透镜焦距中图分类号:G642 ; ; 文献标志码:A ; ; 文章编号:1674-9324(2015)35-0169-02现如今在大学物理实验教学中为了更加准确和精确的表示实验测量结果,常使用不确定度理论来表示实验测量结果。
[1,2]在大学物理实验教学中,不确定度的计算一直是一个难点,也是一个重点,许多本科学生因为不确定度的计算方法非常复杂,而且计算量很大,而放弃对实验数据的科学处理。
这里我们将阐述大学物理实验教学中不确定度的通常表示方法,并结合有关的基本物理实验,在课堂上用多媒体演示,使大学一年级学生很容易掌握不确定度的计算,取得了良好的教学效果。
一、不确定度理论的一般原理和计算方法[3,4]不确定度理论对于直接测量量把数据的不确定度根据数据的性质来分类,把符合正态分布统计规律的称之为A类标准不确定度,而不符合正态分布统计规律的称之为B类标准不确定度。
把两类不确定度的平方和的根称之为测量量的合成标准不确定度,或者简称为不确定度。
大学物理实验中物理量的直接测量量的平均值的标准偏差即为A类标准不确定度,它的计算公式为:t的大小与物理量的测量次数n和置信概率p有关系,置信概率p一般约定取值为68.3%,特殊情况下置信概率p取95.4%。
如果我们测量9次,置信概率取p=68.3%,那么置信因子取t=1.07。
如果我们测量5次,置信概率取p=68.3%,置信因子取t=1.14。
⼤学物理实验测量的不确定度和数据处理测量的不确定度和数据处理测量不确定度采⽤不确定度的必然性国际计量局等七个国际组织于1993年指定了具有国际指导性的“测量不确定度表⽰指南ISO 1993(E)”(以下简称《指南》)。
⼏年来国际与国内的科技⽂献开始采⽤不确定度概念,我国各个⾼校也不断开展这⽅⾯的讨论,改⾰教学内容与⽅法,以求与国际接轨。
虽然⼀些学者对《指南》的有些内容持批评态度[注1],但总的趋势是在贯彻《指南》的同时,不断改善它。
测量不确定度定义为测量结果带有的⼀个参数,⽤以表征合理赋予被测量量的分散性,它是被测量客观值在某⼀量值范围内的⼀个评定。
不确定度理论将不确定度按照测量数据的性质分类:符合统计规律的,称为A类不确定度,⽽不符合统计规律的统称为B类不确定度。
测量不确定度的理论保留系统误差的概念,也不排除误差的概念。
这⾥的误差指测量值与平均值之差或测量值与标准值(⽤更⾼级的仪器的测量值)的偏差。
测量不确定度的 B类分量仪器的最⼤允差Δ仪测量中凡是不符合统计规律的不确定度统称为B类不确定度,记为ΔB 。
它包含了由测量者估算产⽣的部分Δ估和仪器精度有限所产⽣的最⼤允差Δ仪。
Δ仪包含了仪器的系统误差,也包含了环境以及测量者⾃⾝可能出现的变化(具随机性)对测量结果的影响。
Δ仪可从仪器说明书中得到,它表征同⼀规格型号的合格产品,在正常使⽤条件下,⼀次测量可能产⽣的最⼤误差。
⼀般⽽⾔,Δ仪为仪器最⼩刻度所对应的物理量的数量级(但不同仪器差别很⼤,⼀些常⽤仪器的最⼤允差见第26页)。
测量者的估算误差Δ估测量者对被测物或对仪器⽰数判断的不确定性会产⽣估算误差Δ估。
对于有刻度的仪器仪表,通常Δ估为最⼩刻度的⼗分之⼏,⼩于Δ仪(因为最⼤允差已包含了测量者正确使⽤仪器的估算误差)。
⽐如,估读螺旋测微器最⼩刻度的⼗分之⼀为0.001毫⽶,⼩于其最⼤允差0.004毫⽶;估读钢板尺最⼩刻度的⼗分之⼀为0.1毫⽶,⼩于其最⼤允差0.15毫⽶。
大学物理实验论文:大学物理实验中关于不确定度的几个问题讨论摘要:主要讨论了大学物理实验误差和不确定度的关系以及直接测量不确定度的评估,最后对单次测量的不确定度评估以及不确定度计算过程中数据修约问题进行了讨论。
关键词:大学物理实验;不确定度;误差some discussions about uncertainty in university physics experimentgao jian1, liu wei1, ma xubo21. higher education press, beijing, 100029, china2. physics department of north china electric power university, beijing, 102206, chinaabstract: uncertainty in university physics experiment and its relationship with error were discussed, besides how to assess the uncertainty of direct measurement. and it also discusses the assessment of the uncertainty in one-time measurement and how to revise the data during the process of calculate uncertainty.key words: university physics experiment; uncertainty; error大学物理实验是高等理工科院校学生进行科学实验基本训练的重要基础课程之一。
测量误差与不确定度是大学物理实验中两个非常重要的概念。
误差理论已经较为成熟,而不确定度的概念、理论和应用规范等尚在不断明确、发展和完善之中。
大学物理实验中的误差和不确定性在大学物理实验中,误差和不确定性是无法避免的。
它们对实验结果的精确性和可靠性有很大影响。
本文将对大学物理实验中的误差来源、误差分析方法以及不确定性进行探讨,以期帮助读者更好地理解和处理实验数据。
一、误差来源1. 人为误差:人为误差源于实验者自身的不准确操作或测量判断。
例如,实验者在读数时可能存在读数不准确、操作不规范等情况,从而引入人为误差。
2. 仪器误差:仪器本身存在的误差也是实验中常见的来源之一。
不同仪器的精度和灵敏度不尽相同,所以在进行实验时需要仔细选择和使用仪器,以减小仪器误差对实验结果的影响。
3. 随机误差:随机误差是由一系列随机因素引起的误差。
例如,由于环境的微弱变化或测量手法的不完美,导致的重复测量结果不完全一致。
二、误差分析方法1. 重复测量法:重复测量法是通过多次重复测量同一物理量的数值,然后计算平均值和标准偏差,以减小随机误差对结果的影响。
重复测量法可以提高实验结果的可靠性和精确性。
2. 构造误差概率密度分布图:通过对测量数据进行概率密度分布图的构建,可以了解误差在整个测量范围内的分布情况。
常见的误差分布有正态分布、均匀分布等,通过分析误差的概率分布情况,可以更好地理解误差的特性。
3. 方差分析法:方差分析法可以用来分析不同因素对实验结果的影响程度。
通过对实验数据进行方差分析,可以确定主要误差来源,并且对影响程度较大的因素进行优化,提高实验的精确性。
三、不确定性不确定性是物理实验中非常重要的一个概念。
不确定性是对测量结果的不确定程度进行量化的指标,一般用标准不确定度或扩展不确定度来表示。
1. 标准不确定度:标准不确定度是测量结果的一种误差范围估计值,通常用统计学的方法计算得出。
标准不确定度用来表示一个测量结果的可靠性和精确性。
2. 扩展不确定度:扩展不确定度是对标准不确定度进行修正和扩展的一种误差范围估计值,一般是用于报告测量结果。
扩展不确定度是由标准不确定度与置信度相乘得到的。
大学物理实验中测量不确定度的评定方法大学物理实验是科学证明的关键,因此对实验结果的准确性和可靠性要求至关重要。
实验结果的不确定度是检验实验结果的一种重要指标,它反映了实验的可重复性和有效性。
因此,不确定度的评定是大学物理实验中的重要内容。
不确定度的评定由两个主要步骤组成:测量不确定度的衡量原理和评估不确定度的方法。
在理论上,对实验结果的测量不确定度衡量原理应具有舍入误差、限制实验精度、可重复性误差、有限性测量原理、数据处理原理五个基本原理。
在实操中,评估不确定度的方法应根据不确定度的评估模型,分别采用测量不确定度、可重复性误差、舍入误差、有限性测量和可能的数据处理误差。
首先,对实验结果的不确定度进行测量。
实验中应尽量采取有效措施减少误差,进行可靠的数据测量,并正确记录测量结果,以确定实验的准确性和可靠性。
其次,进行可重复性误差的评估。
在实验中,实验者应重复测量多次,得出稳定的结果后,计算实验结果的可重复性误差。
再次,对舍入误差进行评估。
实验过程中,数据测量值应尽可能准确,但实际数值不一定是很精确的,应根据实际情况舍入,并考虑舍入的真实影响。
第四,执行有限性测量,即考虑实验测量设备和仪器的性能范围,根据测量设备性能,对实验结果进行准确和正确的评估。
最后,根据可能会发生的数据处理误差和统计误差,进行数据处理。
由于数据处理错误可能是实验失误的主要原因,因此,实验者应采取有效措施避免出现数据处理错误,影响实验结果的正确性。
实验结果的不确定度是检验实验结果的重要指标,对大学物理实验的准确性和可靠性具有重要意义。
大学物理实验中测量不确定度的评定方法,其基本流程是以理论指导为基础,采取测量不确定度、可重复性误差、舍入误差、有限性测量和可能的数据处理误差,用有效方法检验实验结果,以保证实验结果的准确性和可靠性。
大学物理实验中测量不确定度的评定方法
在大学物理实验中,测量不确定度是一项重要的任务。
不确定度
的评定方法在测量精度和准确度评估中起着至关重要的作用,以便识
别物理实验数据中的任何可能源导致的误差。
测量不确定度的评定,
可归纳为两个步骤:步骤一,识别影响测量结果的因素;步骤二,应
用不同方法子测量不确定度。
首先,确定可能影响测量结果的因素是评估不确定度的关键。
不
同的物理实验可能存在不同的变量,需要分析和识别的变量可以是无
量纲变量,比如电流、电压、时间间隔以及定量变量,如温度、湿度、压力等。
通过分析实验中所有可能影响结果的变量,可以找出误差的
源头,有助于提高测量精度。
其次,在确定影响测量结果的变量的基础上,可以采用不同的方
法来评估不确定度,并可以尝试多种评估方法,以更准确地衡量不确
定程度。
比如,可以分析设备的精度,采用估算的统计方法,以及采
用假设检验。
这些方法的使用可能会受到实验条件的限制,但是,一
旦选定了合适的方法,就可以得到非常准确的反馈,有助于准确衡量
物理实验中的不确定度。
总之,大学物理实验中测量不确定度的评定方法,主要有:识别
影响结果的变量,以及确定的基础上,选择合适的测量方法衡量不确
定程度。
只有经过科学的分析和准确的测量,才能准确衡量物理实验
数据中的不确定度。
大学物理实验中不确定度计算的总结邱春蓉(西南交通大学理学院,四川成都610031)摘要:本文用两种树型形式总结了大学物理实验教学中直接测量量和间接测量量测量结果计算的公式。
关键词:测量结果平均值不确定度Abstract:Thecalculationofmeasurementresultsofdirectmeasurementandindirectmeasurement incollegephysicalexperimentisconcludedandexpressedintwokindsoftree-type.Keywords:measurementresultsaveragevalueuncertainty在大学物理实验课程中计算量较大的部分主要集中在测量结果中多次测量的算术平均值和平均值的不确定度的计算上。
由于计算公式适用条件涉及到测量量的分类,所以学生们常常把公式张冠李戴。
图1按算术平均值和不确定度展开的测量结果的表示为了方便学生理清计算思路和查阅相关公式,我用两种树型形式将测量结果的计算公式归纳总结了一下。
第一种形式是将测量结果的表示按算术平均值和平均值的不确定度进行展开,如图1所示,第二种形式是按直接测量量和间接测量量进行展开,如图2所示。
图2按直接测量量和间接测量量展开的测量结果的表示其中,x和Y分别表示直接测量量和间接测量量,Y=f(x i),x Y和分别表示直接测量量和间接测量量的算术平均值,u x和u Y分别表示直接测量量和间接测量量的不确定度,u A和u B分别表示直接测量量不确定度的两类分量,A类分量和B类分量,为仪3器误差限,K=,按均匀分布处理,m表示间接测量量中含有直接测量量的个数,n表示某一个直接测量量的测量次数。
通过图1和图2两种形式的表示,学生在计算不确定度时就可以方便而且思路清晰地查找相应公式了。
参考文献温诚忠等编,物理实验教程,西南交通大学出版社,1999年。
大学物理实验不确定度引言在进行大学物理实验时,我们经常会遇到一些测量数据需要进行分析和处理的情况。
然而,真实的物理量是由各种各样的测量误差和不确定度组成的。
因此,正确地评估和报告测量的不确定度对于得出准确的结果至关重要。
什么是不确定度不确定度是指测量结果与被测量物理量真值之间的差异度量。
它反映了测量结果的精确程度和可靠性。
测量不确定度由多种因素引起,如测量设备的精确度、实验条件的稳定性、人为误差等。
如何评估不确定度评估不确定度的方法可以分为两种:直接测量法和间接测量法。
直接测量法直接测量法是指直接对被测量物理量进行测量和记录。
在这种情况下,不确定度可以通过测量设备的精确度和重复测量来评估。
重复测量可以帮助我们确定测量结果的可靠性,进而评估不确定度的大小。
间接测量法间接测量法是指通过对几个相关的物理量进行测量,然后使用数学关系式计算所要测量的物理量。
在这种情况下,不确定度的评估需要考虑每个测量值的不确定度以及数学关系式的传递误差。
不确定度的类型不确定度可以分为两种类型:随机不确定度和系统不确定度。
随机不确定度随机不确定度是由于测量条件的变化或测量设备的随机误差引起的。
它可以通过重复测量获得一系列测量结果,并从中计算出平均值和标准偏差来评估。
系统不确定度系统不确定度是由于系统性误差或仪器固有误差引起的。
它通常不会在重复测量时得到纠正。
评估系统不确定度需要考虑实验装置的特性以及操作者的技术能力。
不确定度的表示方法表示不确定度的常见方法有两种:标准不确定度和扩展不确定度。
标准不确定度标准不确定度是测量结果不确定度的一种方法。
它表示为一个具有区间的数字,通常用测量结果的标准差表示。
标准不确定度给出了测量结果的范围,但无法确定具体的上下限。
扩展不确定度扩展不确定度是在标准不确定度的基础上,根据所选的置信度给出测量结果的范围。
它考虑了标准不确定度的不确定性,并通过乘以一系列修正因子来扩展结果。
不确定度的传递规则当使用数学关系式计算一个物理量时,我们需要考虑每个测量值的不确定度如何传递给最终结果。
大学物理实验不确定度求解等物理实验中的不确定度是指测量结果中存在的误差,可能来自于仪器、环境或人为因素。
准确地确定不确定度对于实验数据的解释和分析至关重要。
以下是一些关于大学物理实验不确定度的求解方法和注意事项。
1. 误差的类型在测量中,可能出现系统误差和随机误差。
系统误差指的是由于仪器的固有缺陷或人为因素带来的偏差,相对稳定;而随机误差则是由于人为或环境因素导致的测量结果的波动性,相对不稳定。
在求解不确定度时,需要对这两种误差进行区分,并分别处理。
2. 不确定度的定义不确定度是指测量结果中的误差范围。
它考虑了随机误差和系统误差的影响,并通过标准偏差来衡量测量结果的散布程度。
不确定度表示为一个带有误差单位的数值,如测量物理量的标准偏差为 0.1 米,则不确定度为(0.1 ± 0.001) 米。
3. 标准偏差的计算标准偏差是衡量测量结果离平均值的距离的一种方法。
它的值越小,说明测量数据越精确。
计算标准偏差的公式为:s=sqrt(sum((x-xt)^2)/n-1)其中,s 表示标准偏差,sqrt 表示开平方根,sum 表示求和,x 表示测量数据,xt 表示平均值,n 表示测量数据的个数。
4. 置信度置信度是指在保持实验误差范围内,测量结果的误差落在某一区间内的概率。
置信度通常用百分比来表示。
例如,95% 的置信度表示测量结果的误差在一定程度内可以达到95% 的概率。
计算不确定度时,需要考虑随机误差和系统误差的影响。
对于随机误差,可以采用标准偏差进行估计;对于系统误差,可以进行调整或校准。
具体的计算公式和方法,需要根据实验情况和测量器材的精度进行选择。
6. 注意事项在实验中,应该尽可能减小误差,并采取一些措施来消除系统误差。
例如,选择合适的测量仪器、重复测量多次、同一实验由多个人进行测量等。
此外,在进行实验时,还应该注意一些基本原则,如准确度、精确度、均匀性、稳定性等。
通过认真分析实验数据,可以提高物理实验的可靠性和精度,更好地满足实验目的和要求。
大学物理实验不确定度简介在大学物理实验中,测量是一个非常重要的工作。
然而,任何测量都会存在一定的不确定度。
不确定度是指测量结果与真实值之间的差异。
在进行物理实验时,我们通常关心的是测量结果的准确性和精确性。
准确性是指测量结果与真实值的接近程度,而精确性是指测量结果的稳定性和重复性。
为什么需要关注不确定度?了解和考虑不确定度对于科学实验的合理设计和数据分析至关重要。
准确的不确定度估计可以帮助实验者判断实验结果的可靠性,并评估实验偏差的可能原因。
不正确地估计不确定度可能导致错误的结论和误导性的数据分析,甚至对进一步的研究产生不良影响。
如何计算不确定度?在物理实验中,不确定度可以通过以下几种方式计算:1. 个别测量值的不确定度个别测量值的不确定度可以通过实验仪器的精度和分辨力来估计。
精度是指仪器测量结果的稳定性,而分辨力是指仪器能够分辨出来的最小变化量。
根据测量设备的精度和分辨力,我们可以对测量值的不确定度进行估计。
2. 多次测量的不确定度在大学物理实验中,我们通常会进行多次测量来提高测量结果的精确性。
多次测量的不确定度可以通过计算测量值的标准偏差来估计。
标准偏差是多次测量结果与其平均值之间的差异的度量。
标准偏差越小,表示测量结果的精确性越高。
3. 不确定度的合成在实验中,我们通常会有多个测量结果,并且每个测量结果都会有其个别的不确定度。
为了获得整个实验结果的不确定度,需要通过适当的方法将个别不确定度合成为一个总体不确定度。
合成不确定度的方法有很多种,例如加法合成法和乘法合成法等。
如何减小不确定度?在物理实验中,我们可以通过以下方法来减小不确定度:1. 提高实验仪器的精度和分辨力使用高精度的实验仪器可以减小个别测量值的不确定度。
精度更高的仪器可以提供更准确和精确的测量结果。
2. 增加测量次数多次测量可以减小多个测量结果的标准偏差。
通过进行多次测量并计算平均值,可以提高测量结果的准确性和精确性。
3. 注意仪器使用的环境条件在进行物理实验时,环境条件对测量结果的影响是不可忽视的。