两点之间线段最短
- 格式:ppt
- 大小:958.00 KB
- 文档页数:9
两点之间线段最短公理-概述说明以及解释1.引言1.1 概述:在几何学中,两点之间的线段最短公理是一个基础性原理,它表明在平面几何中,任意两个点之间的直线段是最短的。
这个公理是几何学中最基本的原理之一,也是许多几何性质和定理的基础。
通过这个公理,我们可以得出许多重要的定理和结论,帮助我们解决各种几何问题。
在本文中,我们将探讨两点之间线段最短公理的概念,并详细阐述如何证明这一公理。
我们还将探讨这一公理在实际生活中的应用与意义,以及对几何学习的重要性。
通过深入研究和理解这一公理,我们可以更好地理解几何学中的基本概念,为我们的学习和应用提供更多的帮助和指导。
1.2 文章结构文章结构部分主要包括文章的章节划分和各章节内容的概要描述。
在本篇文章中,结构为引言、正文和结论三个部分。
- 引言部分包括概述、文章结构和目的三小节,首先介绍了问题背景与重要性,然后说明文章将分为哪几部分展开讨论,最后明确了文章的目的和意义。
- 正文部分包括两点之间线段最短的概念、证明两点之间线段最短的公理和实际应用与意义三个章节,分别对概念、公理和应用进行深入的讨论和分析,展示了两点之间线段最短的原理和相关应用。
- 结论部分包括总结、反思和展望三个小节,对文章的主要内容进行总结概括,进行一定的思考和展望未来可能的研究方向。
1.3 目的:本文的目的在于阐述和探讨数学领域中一个重要的公理——两点之间线段最短的公理。
通过对这个公理的定义、证明以及实际应用与意义的分析,可以帮助读者更深入地理解数学中的基本原理和逻辑推理。
同时,通过学习这个公理,我们也可以更好地应用它在解决数学问题和实际生活中的实际问题中。
通过本文的阐述,读者可以了解到两点之间线段最短的公理在几何学中的重要性和作用,进一步提升自己的数学思维能力和解决问题的能力。
此外,通过对这个公理的研究,我们也可以深入了解数学中的逻辑推理和证明方法,从而拓展自己的数学知识和认识。
总的来说,本文的目的在于引导读者深入思考和探索数学中的基本概念和原理,帮助读者更好地理解和运用这些概念,从而提高自己在数学领域的学习和应用能力。
一.选择题(共40小题)1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短考点:线段的性质:两点之间线段最短。
专题:推理填空题。
分析:根据线段的性质解答即可.解答:解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选D.点评:本题考查的是线段的性质,即两点之间线段最短.2.下列生活或生产现象中,可用公理“两点之间,线段最短”来解释的现象有()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D.以上说法都不能用此公理解释考点:线段的性质:两点之间线段最短。
专题:常规题型。
分析:根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.解答:解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故本选项正确;C、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误;D、因为B选项可以解释,故本选项错误.故选B.点评:本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.3.如图所示,由A到B有①②③三条路线,最短路线为③的理由是()A.因为它直B.两点确定一条直线C.两点间距离定义D.在连接两点线中,线段最短考点:线段的性质:两点之间线段最短。
专题:综合题。
分析:根据连接两点的所有线中,线段最短解答.解答:解:根据图象,③线路最短,理由是两点之间,线段最短,故选D.点评:此题考查知识点两点之间,线段最短,难度适中.4.修路工程队在修建公路时,有时需要将弯曲的道路改直,这样做能缩短路程的依据是()A.两点确定一条直线B.两点之间的所有连线中,直线最短C.线段有两个端点D.两点之间的所有连线中,线段最短考点:线段的性质:两点之间线段最短。
两之间线段最短求最值四大类型【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。
【方法技巧】模型一“一线两点”型(一动+两定)类型一异侧线段和最小值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使PA+PB值最小.【解题思路】根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.类型二同侧线段和最小值问题(将军饮马模型)问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得PA+PB值最小.【解题思路】将两定点同侧转化为异侧问题,同类型一即可解决.作点B关于l 的对称点B′,连接AB′,与直线l的交点即为点P.类型三同侧差最大值问题问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B,P 三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延长,与直线l的交点即为点P.类型四异侧差最大值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】将异侧点转化为同侧,同类型三即可解决.模型二“一点两线”型(两动+一定)问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN周长最小.【解题思路】要使△PMN周长最小,即PM+PN+MN值最小.根据两点之间线段最短,将三条线段转化到同一直线上即可.模型三“两点两线”型(两动+两定)问题:点P,Q是∠AOB的内部两定点,在OA上找点M,在OB上找点N,使得四边形PQNM周长最小.【解题思路】要使四边形PQNM周长最小,PQ为定值,即求得PM+MN+NQ的最小值即可,需将线段PM,MN,NQ三条线段尽可能转化在一条直线上,因此想到作点P关于OA的对称点,点Q关于OB的对称点.【典例分析】【典例1-1】基本模型问题:如图,定点A,B位于动点P所在直线l同侧试确定点P的位置,使AP+BP的值最小.解题思路:一找:作点B关于直线l的对称点B',连接AB′,与直线l交于点P;二证:验证当A,P,B'三点共线时,AP+BP取得最小值.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例1-2】模型演变问题:如图,定点A,B位于动点P所在直线l同侧,在直线l上确定点P的位置,使|P A ﹣PB|的值最大.解题思路:一找:连接AB并延长,交直线l于点P;二证:验证当A,B,P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-3】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使AP+BP 的值最小.解题思路:一找:连接AB交直线l于点P;二证:验证当A,P,B三点共线时,AP+BP取得最小值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-4】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使|P A﹣PB|的值最大.解题思路:一找:作点B关于直线l的对称点B',连接AB'并延长,交直线于点P;二证:验证当A,B',P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式1-1】如图,已知菱形ABCD的边长为4,∠ABC=60°,点N为BC的中点,点M是对角线AC上一点,则MB+MN的最小值为.【变式1-2】如图,在矩形ABCD中,AB=4,BC=6,点O是对角线BD的中点,E是AB 边上一点,且AE=1,P是CD边上一点,则|PE﹣PO|的最大值为.【变式1-3】如图,在菱形ABCD中,AB=12,∠DAB=60°,对角线AC,BD交于点O,点E,F分别在BD,AB上,且BF=DE=4.点P为AC上一点,则|PF﹣PE|的最大值为.【变式1-4】结论:如图,抛物线y=ax2﹣bx﹣4与x轴交于,A(﹣1,0),B(4,0)两点,与y轴交于点C,直线l为该抛物线的对称轴,点M为直线l上的一点,则MA+MC 的最小值为.【典例2】模型分析问题:点P是∠AOB内的一定点,点M,N分别为OA,OB上的动点,试确定点M,N 的位置,使△PMN的周长最小.解题思路:一找:分别作点P关于OA,OB的对称点P′,P“,连接P'P“,分别交OA,OB于点M,N;二证:验证当P′,M,N,P″四点共线时,△PMN的周长最小.三计算.注:当三个点均为动点时,先假定一个点为定点,再将其特化为“一定两动“问题请写出【模型分析】中解题思路“二证”的过程.【变式2-1】如图,在四边形ABCD中,∠BAD=121°,∠B=∠D=90°,点M、N分别在BC、CD上,(1)当∠MAN=∠C时,∠AMN+∠ANM=°;(2)当△AMN周长最小时,∠AMN+∠ANM=°.【变式2-2】如图,在边长为2的等边△ABC中,点P,M,N分别是BC,AB,AC上的动点,则△PMN周长的最小值为.【典例3】模型分析问题:点P,Q是∠AOB内部的两定点,点M,N分别是OA,OB上的动点,试确定点M,N的位置,使四边形PMNQ的周长最小.解题思路:一找:作点P关于OA的对称点P',点Q关于OB的对称点Q′,连接P′Q′,分别交OA,OB于点M,N;二证:验证当P′,M,N,Q′四点共线时,四边形PQNM的周长最小.三计算.请写出【模型分析】中解题思路“二证”的过程.【变式3-1】如图,已知正方形ABCD的边长为5,AE=2DF=2,点G,H分别在CD,BC 边上,则四边形EFGH周长的最小值为.【变式3-2】如图,在矩形ABCD中,AB=6,BC=3,点E是AB的中点,若点P,Q分别是边BC,CD上的动点,则四边形AEPQ周长的最小值为.【典例4-1】基本模型问题:如图,点A,B为直线l同侧两定点,M,N为直线l上的动点,且MN的长度为定值,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边.构造▱AMNA′,作点A′关于直线l的对称点A“,连接A “B,交直线l于点N,再确定点M;二证:验证当A“,N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例4-2】模型演变问题:如图,直线a∥b,定点A,B分别位于直线a的上方和直线b的下方,M,N分别为直线a,b上的动点,且MN⊥a,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边构造▱AMNA′,连接A'B;二证:验证当A',N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式4-1】如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AM+CN的最小值为.【变式4-2】如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB方向平移得到△A'B'D',连接B'C,D'C,求B'C+D'C的最小值.专题12 两之间线段最短求最值(四大类型含将军饮马)(知识解读)【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。
初一数学《比较线段的长短》知识点精讲知识点总结1、线段的性质:两点之间,线段最短。
2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。
3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。
5、尺规作图:用没有刻度的直尺和圆规作图6、用尺规作线段:(1)作一条线段等于已知线段;(2)作一条线段等于已知线段的二倍;(3)作一条线段等于已知线段的和或差。
其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。
尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.思维导图教学设计一、教材分析:1、教材的地位和作用本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。
v1.0 可编辑可修改一.选择题(共40小题)1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短考点:线段的性质:两点之间线段最短。
专题:推理填空题。
分析:根据线段的性质解答即可.解答:解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选D.点评:本题考查的是线段的性质,即两点之间线段最短.2.下列生活或生产现象中,可用公理“两点之间,线段最短”来解释的现象有()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D.以上说法都不能用此公理解释考点:线段的性质:两点之间线段最短。
专题:常规题型。
分析:根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.解答:解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故本选项正确;C、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误;D、因为B选项可以解释,故本选项错误.故选B.点评:本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.3.如图所示,由A到B有①②③三条路线,最短路线为③的理由是()A.因为它直B.两点确定一条直线C.两点间距离定义D.在连接两点线中,线段最短考点:线段的性质:两点之间线段最短。
专题:综合题。
分析:根据连接两点的所有线中,线段最短解答.解答:解:根据图象,③线路最短,理由是两点之间,线段最短,故选D.点评:此题考查知识点两点之间,线段最短,难度适中.4.修路工程队在修建公路时,有时需要将弯曲的道路改直,这样做能缩短路程的依据是()A.两点确定一条直线B.两点之间的所有连线中,直线最短C.线段有两个端点D.两点之间的所有连线中,线段最短考点:线段的性质:两点之间线段最短。
关于两点之间的距离线段最短问题的探究在初中数学中关于两点之间距离最短的问题,经常出现。
现将这类问题归类如下,以供参考。
探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小。
(如图所示)解:根据两点之间线段最短的基本概念,只用连接AB即可轻松的得到答案。
如图所示。
线段AB与直线L的交点,就是题目要求的点P。
总结:本题虽然十分简单,但却是所有有关本类题目难题的基础,是必须要牢记与掌握的。
下面一题,就是上一题的变形,你还会做吗?探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小。
(如图所示)解:本题的难点不在于解题过程,而在于解题的思想,往往大家不能正确的找到解题的思路。
那么,我就在此抛砖引玉,说说我的看法。
首先,作点B关于L的对称点B',(如图所示),因为OB'=OB,∠BOP=∠B',OP=OP,所以△OPB≌△OPB'。
所以,PB=PB'。
因此,求AP+BP就相当于求AP+PB'。
这样,复杂的问题便通过转化变得简单,成了探究问题一。
因此只用连接AB'即可,与直线L的交点,就是题目要求的点P。
结论:我们完全也可以把以上的结论当作一个模块牢记下来,成为自己解题的方法之一。
探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小。
(如图所示)解:利用探究问题二的结论,作A与OM的对称点D,再作A与ON的对称点E。
连接DE(如图所示),据上题铺垫,我们可得,AB=BD,AC=CE,又因为D,B,C,E在一条直线上,所以,这时的周长是最短的。
总结:本题可总结为“三角形的一点决定”。
下面我们看一看四边形一边确定。
探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小。
(如图所示)解:有了上一题的铺垫,本题似乎简单了许多,作A关于OM的对称点E,再作B关于ON的对称点F,连接EF即可。
间的河道长度有什么变化?行走的路程?说出其中的道理。
图3爬行到顶点C呢?图4得出线段AB是A、B两点间的最短路径(如图图1-1有人会说:“这也太简单了!”别着急,请看下面这道题(如图2-1):图2-1有一位将军骑着马要从A地走到B地,但途中要到水边喂马喝一次水,则将军怎样走最近。
这道题乍一看似乎无从下手。
但经过观察可以发现此题依然可以利用“两点之间,线段最短”来解决问题,具体方法为:做B点与河面的对称点B',连接AB',可得到马喝水的地方C(如图2-2)。
图2-2再连接CB得到这道题的解A→C→B。
这就是著名的“将军饮马”问题。
不信的话你可以在河边任意取一点C'连接AC'和C'B,比较一下就知道了。
明白了刚才的平面问题,接下来看看立体图形问题(如图3-1)。
图3-1求点A到点C'的最短路径是那一条。
此时已不在同一平面内,不能直接利用公理解决问题。
此时,就要利用数学中的转化思想,把立体图形转化成平面图形来研究(如图3-2)。
图3-2从而得到两条最短路径:A→BC→C'和A→CD→C'。
同理,还可以得出6条最短路径来(如图3-345)。
图3-3 图3-4 图3-5分别为:A→BC→C'、A→CD→C'、A→DD'→C'、A→BB'→C'、A→A'D'→C'、A→A'B'→C'。
那长方体的最短路径呢?我们来看一下这题(如图4-1)图4-1从A'到C,不经过A'B'C'D'和ABCD两面,怎样走最近?我们不如先不考虑第二个条件,从上题可知有六条最短路径,但此题与上题略有不同──长方体各面不相等,因此我们需比较那条路径最短。
观察发现这六条路径,两两长度相等,即只比较这三条路径谁更短就可以了(如图4-23)。
图4-2 图4-3解:设长方体长、宽、高分别为x、y、z,依题意,得:①=②=③=∵ 2xy>2xz>2yz∴③<②<①即走第三条路径最短。
得到从A'到C的路径中从A'→BB'→C和A'→DD'→C最短,与第二个已知条件无关。
两点之间线段最短是什么知识点
1. “两点之间线段最短”可是几何中的重要知识点呢!就好比你从家到学校,肯定是走直直的路最近呀,而不是绕一大圈。
2. 嘿,想想看,两点之间线段最短这个知识点多实用啊!就像你要去拿桌子上的苹果,肯定是直接伸手过去,而不是绕来绕去的,对吧?
3. 哇塞,“两点之间线段最短”,这绝对是个关键的知识点哟!好比你去追小伙伴,肯定是选最近的路线才能最快追到呀。
4. 听好了呀,两点之间线段最短可是很关键的呢!就像你想要快点到达操场,肯定不会走那些弯弯绕绕的路吧?
5. “两点之间线段最短”呀,可别小瞧它!比如你着急上厕所的时候,肯定是选最短的路冲过去呀,哈哈。
6. 哎呀呀,两点之间线段最短这可是不容置疑的知识点呀!就像蜜蜂采蜜,它也知道飞直线最近呀,这不是很明显嘛。
7. 来看看,两点之间线段最短,多直白的道理啊!就像你要给妈妈递东西,肯定是直接递过去而不是绕圈子呀。
8. 瞧,两点之间线段最短,多重要啊!就跟你饿了要去拿面包一样,肯定是走最近的路呀,这再简单不过啦!
我的观点结论就是:两点之间线段最短是非常基础且实用的几何知识点,在我们生活中随处可见它的应用,一定要好好掌握呀!。