两点之间线段最短教案
- 格式:doc
- 大小:1.56 MB
- 文档页数:4
最短路径问题【目标导航】1.理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”. “饮马问题”,“造桥选址问题”.考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.2.解题总思路:找点关于线的对称点实现“折”转“直”.关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理.这对于我们解决此类问题有事半功倍的作用. 【合作探究】探究一:(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线l 是一条河,A 、B 是两个村庄,欲在l 上的某处修建一个水泵站M ,向A 、B 两地供水,要使所需管道M A +M B 的长度最短,在图中标出M 点.(3)如图3,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段C D 表示.试问:桥C D 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥C D 的位置.画出示意图,并用平移的原理说明理由.变式1.在边长为2㎝的正方形ABC D 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝.变式2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为__________第2题 第3题 第4题 变式3.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为_________变式4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是A D 和AB 上的动点,则B M+MN 的最小值是____.变式5.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4).OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,则PC +PD 的最小值________,此时P 点的坐标为________. 探究二:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马, 先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线.A DE P BC 第5题O x y B D A C P变式1.如图,已知平面直角坐标系中,A ,B 坐标为A (-1,3),B (-4,2),设M ,N 分别为x 轴,y 轴上一动点,问是否存在这样的点M (m ,0),N (0,n )使四边形AB MN 的周长最短?并求m ,n 的值.第1题 第2题 第3题 第4题变式2.如图,在△ABC 中,D 、E 为边AC 上的两个点,试在AB ,BC 上各取一个点M ,N ,使四边形DMNE 的周长最短.变式3.如图,已知平面直角坐标系,A 、B 两点的坐标分别为A (2,-3),B (4,-1).若C (a ,0),D (a +3,0)是x 轴上的两个动点,则当a = 时,四边形AB D C 的周长最短. 变式4.如图,抛物线23212--=x x y 与直线y=x -2交于A 、B 两点(点A 在点B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E ,再到达x 轴上的某点F ,最后运动到点B .若使点P 运动的总路径最短,则点P运动的总路径的长为 . 探究三:1.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B 是这个台阶的两个相对端点,A点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是 寸.第1题 第2题 第3题 第4题 第5题 第6题 2.如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽A D 平行且大于A D ,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是 米.(精确到0.01米)3.如图所示,是一个圆柱体,A BCD 是它的一个横截面,A B=,BC=3,一只蚂蚁,要从A 点爬行到C 点,那么,最近的路程长为 .4.如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .5.有一长、宽、高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B 处,则需要爬行的最短路径长为 .6.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是 .y O x P D B (40)A , (02)C ,【课后练习】1.如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).(1)试证明:无论点P 运动到何处,PC 与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.2.如图,已知点A (-4,8)和点B (2,n )在抛物线y=ax 2上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2)平移抛物线y=ax 2,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′C D 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.3. 如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC ,已知AB=5,DE =1,BD =8,设CD=x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式224(12)9x x ++-+的最小值.小结:上式中,原式=22222(12)3x x ++-+,而22a b +的几何意义是以a 、b 为直角边的直角三角形斜边长.【拓展提升】 1.阅读材料: 例:说明代数式221+(3)4x x +-+的几何意义,并求它的最小值.解:2222221+(3)4(0)1+(3)2x x x x +-+=-+-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则22(0)1x -+可以看成点P 与点A (0,1)的距离,22(3)2x -+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度 之和,它的最小值就是PA+PB 的最小值.设点A 关于x 轴的对称点为A ′,则PA=PA ′,因此,求PA+PB 的最小值,只需求PA ′+PB 的最小值,而点A ′、B 间的直线段距离最短,所以PA ′+PB 的最小值为线段A ′B 的长度.为此,构造直角三角形A ′CB ,因为A ′C =3,CB =3,所以A ′B =32,即原式的最小值为32. 根据以上阅读材料,解答下列问题: (1)代数式22(1)1+(2)9x x -+-+的值可以看成平面直角坐标系中点P (x ,0)与点 A (1,1)、点B 的距离之和.(填写点B 的坐标) (2)代数式2249+1237x x x +-+的最小值为 .2.如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4 x2 2A8 -2 O-2 -4 y 6 B C D -44((2)①图)4 x2 2 A ′8-2 O -2 -4 y 6 B ′ CD -4 4 A ′′((2)②图)4 x2 2 A ′8 -2 O-2 -4 y6 B ′ C D -4 4 A ′′B ′′。
教学设计复习引入(5分钟)新课问题导入(3分钟)一.复习引入1.两点之间,什么最短?2.点到直线的距离?问题:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
(连接AB,线段AB与直线L的交点P ,就是所求。
)二、探究如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?像这样我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”。
问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:看图:从A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全最短?回答问题学生思考学生思考,并在草稿纸上画图,看是否可以确定最短路线。
学生在老师的引导下思考。
引入课题由浅入深,让学生先理解两点在直线两侧情况中的最短路径问题。
引出问题(3分钟)精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?(将A,B 两地抽象为两个点,将河l 抽象为一条直线.)你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图).你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?师讲解做法:如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?学生在老师的引导下,尝试用轴对称来试试,看是否是最短距离。
“直线、射线、线段”第三课时教学背景:这节课是“直线、射线、线段”第三课时,对于“两点之间线段最短”这一事实的讲解中发生的一个热烈的争论,从同学们的讨论中发现在理论,现实和情理也是有争议的;同学们对这一事实十分肯定,但从这一案例中也发现学生的思想和价值观的形成过程。
新课标中提倡每个人能在数学中获得发展------知识,思维,情感,价值观。
【案例简述】本节课是在学习直线、射线、线段两课时的基础上进一步探究“两之间线段最短”这一事实。
书128页思考如图 4.2-12,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线。
••A B学生很容易的就画出了线段AB。
为了使这节课能够更加富有情趣,和意义我又设计了以下情景:如果你在上学的路上要路过一块草坪你应该怎么走?学生1:“直接穿过去。
”师:“能否画出你走的路线?”学生1画好之后补充:“两点之间线段最短。
”师:回答的很好!于是我再接着设置了一个情景师:“从她身边跑过一只小狗,从她刚画的路线跑了过去。
”。
(同学们通过思考后)此时几个学生似乎明白了什么,一直再举手。
学生2:“老师!我觉得不应该踩踏草坪,我应该沿着草坪边走。
”学生3:“对的,如果我们为了走近路就去践踏草坪,我们就和狗一样了!”此时一片掌声。
学生4:“我觉得狗都知道两点之间线段最短何况人呢?”学生5:“你那样说不对,人是要有道德的,不能不讲道德践踏草坪”学生6:“老师!您是给我们设定了情景,如果学校着火了,学生的地方是消防车,那我觉得应该从草坪直接穿过去,人的生命最重要,草可以再种而生命不能再生。
”学生又是一片掌声。
学生7:。
此时课堂达到一定高潮!学生都能说出自己的看法。
师:“老师很高兴,你说的太好了,老师给你们一个赞!!”结论:本案例虽然是个比较简单事实的认可过程,但是内初班同学在老师的情景设定,大胆自发表自己的看法和意见,并且在此基础上有所拓展,得到了知识,方法,情感的发展。
“两点之间线段最短”教案
教材简析
信息窗以一列火车要过隧道为背景引入对两点间线段最短等知识的学习。
教学目的与要求:
1、结合具体情境,理解“两点间所有连线中线段最短”,知道两点间距离和点到直线的距离。
2、在对两点间的距离和点到直线的距离知识的探究过程中,培养观察、想象、动手操作的能力,发展初步的空间观念。
3、在解决实际的问题过程中,体验数学与日常生活的密切联系,提高学习兴趣,学会与他人合作共同解决问题。
教学重点与难点:
理解“两点间所有连线中线段最短”,知道两点间距离和点到直线的距离。
教具:
三角尺、直尺、多媒体、线团
教学过程:
活动一
活动二
同学们观察一下这几幅图,发现了什么现象?
人们明明知道践踏草坪是不文明的行为,但在生活中还是常常出现这种现象,究竟是什么原因呢?
动手做一做
在纸上任意点两点,用三条线联接它们,量一下它们的长短,
段最短”,我们都发现了垂直的那条线段最短最短。
它的长度就是点到这条直线的距离。
用FLASH给大家演示一下“垂线段最短”。
你能自己画一下点到直线的垂直线段吗?(注意要标上垂足)活动三
说说生活中“两点间的距离”和“点到直线的距离”的应用。
学生画出几条不同的线段,再通过观察、测量得出结论。
活动四
通过这节课的学习,你有什么收获?(学生交流各自的发现。
)活动五
自主练习 1、2题。
(学生独立画图。
)
作业:同步P55-P57
板书设计:
两点之间线段最短
点到直线的距离。
4.2 比较线段的长短教学目标知识与能力1、借助具体情境了解“两点之间所有连线中,线段最短”的性质。
2、能借助直尺、圆规等工具比较两条线段的长短。
3、能用圆规作一条线段等于已知线段。
教学思考创设现实情境,鼓励学生独立思考、独立操作,然后通过合作、交流去探索问题,解决问题。
解决问题`立足具体情境,尽可能从学生感兴趣的话题出发,去发展有条理的思考,并能用语言表达自己的发现成果。
情感态度与价值观调动学生的主观能动性,积极参与数学活动,促使学生在学习中培养良好的情感态度、主动参与、合作的意识,进一步提高观察、分析和抽象的能力。
教学重点:了解线段性质及线段比较方法,两点之间的距离的概念和线段中点的概念。
教学难点用直尺和圆规作一条线段等于已知线段,比较线段长短的方法,线段中点的表示方法及应用。
教学过程一、创设情境,检查预习效果,引入新课想一想1、(1)由我家到八中的路线有四条,哪一条最近?我家到八中的距离是什么?检查学案探究一中的(1)到(4)小题。
线段的性质:两点之间的所有连线中,线段最短。
也可简述为:“两点之间,线段最短”这就是线段的基本性质两点之间的距离:两点之间线段的长度叫做这两点之间的距离(强调长度)(2)由小狗跑得远,还是小猫跑远?你是怎样比较的?(经过讨论、交流后,有的说“目测”,有的说“自己去度量”等。
)引出本节课题如果把小狗、小猫、骨头和鱼看作点,路径看作线段,其实质就是比较线段A B 的长短,这节课我们来研究比较线段的长短。
二、探究新知,学习新课在研究如何比较之前大家来看这个问题:如何在黑板上画一条和一根细木棍等长度的线段?学生独立思考后回答。
为后面的尺规作图打好基础,让学生初步感受类比法学习新知。
做一做怎样用圆规作一条线段等于已知线段(师生互动作图)1、例:已知线段a .求作线段,使AC =a 做法:①先作一条射线AB 。
②用圆规量出已知线段的长度a 。
③在射线AB 上以A 为圆心,截取AC = a 。
13.4课题学习最短路径问题)课程设计修改和反思实际问题转化为数学问题来解决。
今天我们就通过几个实际问题学习如何设计最短路径。
(设计意图:在学习本节课之前让学生们清楚学习这节课的知识在解决生活实际问题中有什么作用,同时让学生意识到数学知识应用的广泛性。
) 导:相传,古希腊亚历山大里亚城有一位久负盛名的学者,名叫海伦。
有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:如图,从点A 地出发,到一条笔直的河边L 饮马,然后到B 地,到河边的什么地方饮马,可使所走的路径最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题,这个问题后来被称为“将军饮马问题”。
(设计意图:利用问题故事的形式导入,既激发学生的学习兴趣,又明确的出示了这节课的学习内容。
) 知识回顾:1.如图,连接A 、B 两点的所有连线中,哪条最短?ABl课程设计修改和反思为什么?2.如图,点P 是直线l 外一点,点P 与该直线l 上各点连接的所有线段中,哪条最短?为什么?3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?4.如图,如何做点A 关于直线l 的对称点●┐(设计意图:在学习本节课之前先让学生预习几个知识点,便于这节课学生们能熟练的运用所学的知识解决本节课的内容。
) 师:让我们回到刚才出示的问题中,引导学生将实际问题转化为数学问题,并明确作图要求。
A B ① ②③P l A B C D lAA B l抽象成ABl数学问题课程设计修改和反思作图:在直线l 上求作一点C,使AC+BC 最短问题.(设计意图:运用转化的思想,将实际问题抽象成数学问题,用数学思想和方法进行解决。
)思:现在假设点A,B 分别是直线l 异侧的两个点,如何在l 上找到一个点,使得这个点到点A ,点B 的距离的和最短?根据是“两点之间,线段最短” “两边之和大于第三边”。
(设计意图:让学生们思考假设点A,B 分别是直线l 异侧的两个点,如何在l 上找到一个点,使得这个点到点A ,点B 的距离的和最短的问题,并用数学知识进行验证和推理。
初中数学最小的距离教案教学目标:1. 让学生理解两点之间线段最短的性质,并能运用到实际问题中。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 两点之间线段最短的性质。
2. 如何运用数学知识解决实际问题。
教学难点:1. 如何理解两点之间线段最短的性质。
2. 如何将实际问题转化为数学问题。
教学准备:1. 教师准备PPT或者黑板,展示相关例子和问题。
2. 准备一些实际问题,让学生思考和解决。
教学过程:一、导入(5分钟)1. 教师通过PPT或者黑板,展示两个点A和B,询问学生如何连接这两个点。
2. 让学生思考并回答,引导他们意识到连接两点的方式有很多种,但有些方式会比其他方式更长。
二、新课(20分钟)1. 教师介绍两点之间线段最短的性质,即连接两点的所有线中,线段是最短的。
2. 通过PPT或者黑板,展示一些例子,让学生理解并验证这个性质。
3. 教师讲解如何将实际问题转化为数学问题,例如找出一系列点中距离最短的点对。
4. 学生分组讨论,每组解决一个实际问题,并展示解题过程和答案。
三、练习(15分钟)1. 教师给出一些练习题,让学生独立解决。
2. 学生完成后,教师进行讲解和解析。
四、总结(5分钟)1. 教师引导学生总结今天学到的知识点,即两点之间线段最短的性质和如何运用到实际问题中。
2. 教师强调这个知识点的重要性和应用广泛性,鼓励学生在日常生活中多观察和思考。
教学反思:本节课通过导入、新课、练习和总结等环节,让学生理解了两点之间线段最短的性质,并学会了如何运用到实际问题中。
在教学过程中,教师通过展示例子和讲解,帮助学生理解和掌握知识点。
同时,学生通过分组讨论和独立练习,提高了团队合作能力和解决问题的能力。
但是,对于一些学生来说,将实际问题转化为数学问题可能还存在一定的困难,教师可以在今后的教学中加强这方面的引导和训练。
13.4最短路径问题一、教学内容:本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有连线中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。
二、教学目标1、能利用轴对称解决简单的最短路径问题2、再谈岁最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。
三、教学重难点重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
四、教学问题诊断最短路径问题从本质上说是最值问题,作为初中学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。
解答“当点A\B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。
在证明“最短”时,需要在直线上任取一点(与所求做的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法,一些学生想不到。
教学时,教师可以让学生首先思考“直线l异侧的两点,与直线l上的点的和最小”为学生搭建“脚手架”,在证明最短时,教师要适时点拨学生,让学生体会任意的作用。
五、教学过程教师引语:现实生活中经常会有这样的生活经历,比如学校虽然为我们铺设了一些石板甬路,方便同学们的行走,但是很多时候我们却并不在这些小路上行走,这样做的目的是什么呢?(学生一起回答)如果用数学知识来解释这种行为,那就是我们曾经学习的“两点之间、线段最短”或“垂线段最短”,我们称这样的问题为最短路径问题(板书课题)现实生活中经常涉及到最短路径问题,这节课我们学习的主要任务就是最短路径问题,并用所学知识探究数学史上著名的“将军饮马问题”。
人教版八年级上册第十三章轴对称课题学习最短路径问题教学设计课题人教版八年级上册第十三章轴对称教具准备多媒体课件,正方体纸盒13.4课题学习最短路径问题学具准备正方体纸盒,三角板课时共(1)课时,第(1)课时执教教师教材分析本节课是在学生已经学习了“两点之间,线段最短”“垂线段最短”的基础上,借助轴对称研究以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.学情分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手。
教学目标知识与技能1.能利用轴对称解决简单的最短路径问题。
2.体会图形的变化在解决最值问题中的作用。
3.感悟转化思想。
过程与方法1.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力。
;2.渗透数学建模的思想。
情感态度与价值观1.通过有趣的问题提高学习数学的兴趣.2.体验数学学习的实用性,体现人人都学有所用的数学教学重点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题;培养学生解决实际问题的能力.教学难点路径最短的证明教学过程设计设计意图一、以旧引新,激情引趣1、利用101PPT中本课的一道习题,复习“两点之间,线段最短”为了激发学生的求知欲,利用蚂蚁爬行最短路径问题激情引趣。
充分利用101PPT学科工具中立体展开还原的动画过程,让学生通过观察纸盒的打开过程,寻找蚂蚁的爬行捷径。
从而引出线段公理:两点之间线段最短和垂线段的性质:垂线段最短让学生体会新知识是在原有知识基础上“生长”出来的。
以旧引新,给予学生亲切感,树立学好本节课的信心。
二、展示目标,合理定位利用思维导图,展示本节课的学习目标三、探究新知,教师主导1、师生一起借助信息技术探究“将军饮马问题(一)”传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:将军每天骑马从城堡出发,到军营,途中马要到小溪边饮水一次。
“两点之间线段最短”教案
教材简析
信息窗以一列火车要过隧道为背景引入对两点间线段最短等知识的学习。
教学目的与要求:
1、结合具体情境,理解“两点间所有连线中线段最短”,知道两点间距离和点到直线的距离。
2、在对两点间的距离和点到直线的距离知识的探究过程中,培养观察、想象、动手操作的能力,发展初步的空间观念。
3、在解决实际的问题过程中,体验数学与日常生活的密切联系,提高学习兴趣,学会与他人合作共同解决问题。
教学重点与难点:
理解“两点间所有连线中线段最短”,知道两点间距离和点到直线的距离。
教具:
三角尺、直尺、多媒体、线团
教学过程:
活动一
活动二
同学们观察一下这几幅图,发现了什么现象?
人们明明知道践踏草坪是不文明的行为,但在生活中还是常常出现这种现象,究竟是什么原因呢?
动手做一做
在纸上任意点两点,用三条线联接它们,量一下它们的长短,比较一下谁最短?
问题一:
考虑一下怎么走最近?
学生通过操作感知“两点之间的线段最短”。
你能举出生活中应用“两点间距离”的例子吗?学生画两点间的连线。
活动二
出示图:王奶奶病了,她到哪个医院更近一些?
第一医院
第二医院
第三医院
学生联系实际举例说明。
通过测量,你发现了什么?学生通过操作感知“两点之间的线段最短”,我们都发现了垂直的那条线段最短最短。
它的长度就是点到这条直线的距离。
用FLASH给大家演示一下“垂线段最短”。
你能自己画一下点到直线的垂直线段吗?(注意要标上垂足)活动三
说说生活中“两点间的距离”和“点到直线的距离”的应用。
学生画出几条不同的线段,再通过观察、测量得出结论。
活动四
通过这节课的学习,你有什么收获?(学生交流各自的发现。
)活动五
自主练习 1、2题。
(学生独立画图。
)
作业:同步P55-P57
板书设计:
两点之间线段最短
点到直线的距离。