七年级上册数学两点之间线段最短教学设计
- 格式:doc
- 大小:93.50 KB
- 文档页数:4
线段最短教案教案标题:线段最短教案教案目标:1. 通过本课的学习,学生将能够理解线段的概念,并能够计算两点之间的最短距离。
2. 学生将能够应用线段最短距离的概念解决实际问题。
教学资源:1. 教学投影仪或白板2. 学生练习册3. 直尺和量角器4. 实际生活中的线段示例图片教学步骤:引入活动:1. 使用投影仪或白板展示一张实际生活中的线段示例图片,例如两个建筑物之间的直线距离。
2. 引导学生思考,如何计算出这两个建筑物之间的最短距离。
教学主体:3. 讲解线段的概念,强调线段是由两个点确定的一条直线部分。
4. 引导学生思考,如何计算两点之间的最短距离。
5. 教师演示如何使用直尺和量角器来测量线段的长度,并计算两点之间的最短距离。
6. 学生进行练习,使用直尺和量角器测量线段的长度,并计算两点之间的最短距离。
巩固活动:7. 学生分组进行小组讨论,解决以下问题:a. 给定一个平面图形,如何确定其中两点之间的最短距离?b. 实际生活中有哪些例子可以应用线段最短距离的概念?展示与总结:8. 邀请学生展示他们的讨论结果,并进行总结。
9. 总结线段最短距离的概念和计算方法,并强调其在实际生活中的应用。
拓展活动:10. 鼓励学生在日常生活中观察并记录应用线段最短距离概念的实例,并在下节课分享。
评估方式:1. 教师观察学生在课堂上的参与度和理解程度。
2. 学生练习册上的书面练习。
备注:根据学生的年级和能力水平,教师可以适当调整教学内容和活动的难度,以确保教学的有效性和适应性。
两点之间,线段最短教学设计教学任务分析教学目标知识与技能理解“两点之间,线段最短”的结论,并能用这一结论解释一些简单的问题。
数学思考经历观察、实验、猜想等数学活动,发展合情推理能力,能有条理地、清晰地阐述自己的观点。
解决问题初步学会从数学的角度提出问题、理解问题,并能应用所学知识解决问题;学会与他人合作,并能与他人交流思维的过程和结果。
情感态度价值观能积极参与数学学习活动,对数学有好奇心与求知欲;在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心;初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。
重点结论的应用过程和拓展问题的探究过程难点拓展问题的探究过程教学流程安排活动流程图活动内容和目的活动1 热身准备我想试试活动2 课题引入1、幻灯片:组图2、数学活动活动3 新课教学解释、应用与交流问题1、怎样走最近?问题2、河道长度问题3、九曲桥3、拓广探索与交流——蚂蚁爬行最短问题活动4 回顾、思考与交流以这首小诗,激发学生大胆参与课堂探究的勇气。
以实际问题情境引入,激发学生学习兴趣。
在解释、应用与交流中理解数学内容引导探究继续深入,引发对问题的深层思考,渗透转化思想学习、反思,提高、升华课前准备教具学具补充材料课件正方体模型教学过程设计问题与情景师生行为设计意图热身准备我想试试罗赛蒂那个说“我想试试”的小孩他将登上山巅,那个说“我不成”的小孩,在山下停步不前。
“我想试试”每天办成很多事,“我不成”就真一事无成。
因此你务必说“我想试试”,将“我不成”弃于埃尘。
一、课题引入1、幻灯片:组图绿地里本没有路,走的人多了… …你能解释一下原因何在?2、数学活动:在纸上任意点两点,用线联接它们,量一下它们的长短,比较一下谁最短?得出结论二、新课教学1、出课题:两点之间,线段最短学生朗读——我想试试教师提出问题学生独立思考,小组交流后回答教师布置数学活动学生分组进行活动,给出探究结论。
教师板书课题以这首小诗,激发学生大胆参与课堂探究的勇气。
两点之间,线段最短优秀教案设计思想(1)国家数学课程标准指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
(2)初一学生从基础知识,基本技能和思维水平以及学习方式等方面有一个逐步适应和提高的过程。
因此,在进行教学设计时,必须时时考虑到新初一学生的学习实际,既不能盲目拔高,也不能搞简单化的结论式教学。
在新课改的过程中,教学设计应立足于学生实际,从大处着眼,深入挖掘教材内容的素质教育功能。
(3)数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
数学教学应从学生的实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习。
(4)本课题通过对内容的挖掘与整理,采用“问题情境──建立模型──解释、应用与拓展”的模式展开教学,让学生经历“从生活中发现数学──在教室里学习数学──到生活中运用数学”这样一个过程,从而更好地理解数学知识的意义,发展应用数学知识的意识与能力,进一步增强学好数学的愿望和信心。
学生通过本节从具体情境发现并提出数学问题的学习活动,进一步体会数学与自然及人类社会的密切联系,了解数学的价值。
在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题。
体会在解决问题中与他人合作的重要性。
体会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。
教学任务分析教学目标知识与技能理解“两点之间,线段最短”的结论,并能用这一结论解释一些简单的问题。
数学思考经历观察、实验、猜想等数学活动,发展合情推理能力,能有条理地、清晰地阐述自己的观点。
“直线、射线、线段”第三课时教学背景:这节课是“直线、射线、线段”第三课时,对于“两点之间线段最短”这一事实的讲解中发生的一个热烈的争论,从同学们的讨论中发现在理论,现实和情理也是有争议的;同学们对这一事实十分肯定,但从这一案例中也发现学生的思想和价值观的形成过程。
新课标中提倡每个人能在数学中获得发展------知识,思维,情感,价值观。
【案例简述】本节课是在学习直线、射线、线段两课时的基础上进一步探究“两之间线段最短”这一事实。
书128页思考如图 4.2-12,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线。
••A B学生很容易的就画出了线段AB。
为了使这节课能够更加富有情趣,和意义我又设计了以下情景:如果你在上学的路上要路过一块草坪你应该怎么走?学生1:“直接穿过去。
”师:“能否画出你走的路线?”学生1画好之后补充:“两点之间线段最短。
”师:回答的很好!于是我再接着设置了一个情景师:“从她身边跑过一只小狗,从她刚画的路线跑了过去。
”。
(同学们通过思考后)此时几个学生似乎明白了什么,一直再举手。
学生2:“老师!我觉得不应该踩踏草坪,我应该沿着草坪边走。
”学生3:“对的,如果我们为了走近路就去践踏草坪,我们就和狗一样了!”此时一片掌声。
学生4:“我觉得狗都知道两点之间线段最短何况人呢?”学生5:“你那样说不对,人是要有道德的,不能不讲道德践踏草坪”学生6:“老师!您是给我们设定了情景,如果学校着火了,学生的地方是消防车,那我觉得应该从草坪直接穿过去,人的生命最重要,草可以再种而生命不能再生。
”学生又是一片掌声。
学生7:。
此时课堂达到一定高潮!学生都能说出自己的看法。
师:“老师很高兴,你说的太好了,老师给你们一个赞!!”结论:本案例虽然是个比较简单事实的认可过程,但是内初班同学在老师的情景设定,大胆自发表自己的看法和意见,并且在此基础上有所拓展,得到了知识,方法,情感的发展。
教学课题 两点之间,线段最短 备课人备课人教 学 目 标知识与技能 理解“两点之间,线段最短”的结论,并能用这一结论解释一些简单的问题。
数学思考经历观察、实验、猜想等数学活动,发展合情推理能力,能有条理地、清晰地阐述自己的观点。
阐述自己的观点。
解决问题 初步学会从数学的角度提出问题、理解问题,并能应用所学知识解决问题;学会与他人合作,并能与他人交流思维的过程和结果。
情感态度价值观能积极参与数学学习活动,对数学有好奇心与求知欲;在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心;初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。
重点结论的应用过程和拓展问题的探究过程结论的应用过程和拓展问题的探究过程难点教学过程设计问题与情景师生行为设计意图热身准备我想试试 罗赛蒂那个说“我想试试”的小孩那个说“我想试试”的小孩他将登上山巅,他将登上山巅, 那个说“我不成”的小孩,那个说“我不成”的小孩,在山下停步不前。
在山下停步不前。
“我想试试”每天办成很多事,“我想试试”每天办成很多事, “我不成”就真一事无成。
“我不成”就真一事无成。
因此你务必说“我想试试”,因此你务必说“我想试试”,将“我不成”弃于埃尘。
将“我不成”弃于埃尘。
一、情境创设,引入新课一、情境创设,引入新课 1、幻灯片:组图、幻灯片:组图绿地里本没有路,走的人多了… … 你能解释一下原因何在?你能解释一下原因何在?2、数学活动:在纸上任意点两点,用线联接它们,量一下它们的长短,比较一下谁最短?量一下它们的长短,比较一下谁最短? 得出结论得出结论学生朗读——我想试试教师提出问题教师提出问题 学生独立思考,小组交流后回答学生独立思考,小组交流后回答 教师布置数学活动教师布置数学活动学生分组进行活动,给出探究结论。
论。
教师板书课题教师板书课题以这首小诗,激发学生大胆参与课堂探究的勇气。
气。
以实际问题情境引入,激发学生学习兴趣,引入本节课题本节课题 动手具体做一做,在做中领悟数学数学二、新课教学二、新课教学1、出课题:两点之间,线段最短、出课题:两点之间,线段最短2、解释、应用与交流、解释、应用与交流 问题1、怎样走最近?、怎样走最近?如图1,从A 地到B 地有四条道路,除它们外能否再修一条从A 地到B 地的最短道路?地的最短道路?教师提出问题教师提出问题学生思考、讨论,发表看法学生思考、讨论,发表看法教师注意对学生几何语言的训练(强调“连接AB ”)”) 在解释、应用与交流中理解数学内容内容 问题2、河道长度、河道长度学生独立思考、学生独立思考、小组讨论、小组讨论、小组讨论、组间交组间交设置三个问题,如图2,把原来弯曲的河道改直,A 、B 两地间的河道长度有什么变化?间的河道长度有什么变化?图2问题3、九曲桥、九曲桥(2)如图3,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座笔直的桥相比,这样做是否增加了游人在桥上行走的路程?说出其中的道理。
七年级上册数学公开课两点之间,线段最短教案各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢两点之间,线段最短北京市东直门中学杜开龙设计思想(1)国家数学课程标准指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
(2)初一学生从基础知识,基本技能和思维水平以及学习方式等方面有一个逐步适应和提高的过程。
因此,在进行教学设计时,必须时时考虑到新初一学生的学习实际,既不能盲目拔高,也不能搞简单化的结论式教学。
在新课改的过程中,教学设计应立足于学生实际,从大处着眼,深入挖掘教材内容的素质教育功能。
(3)数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
数学教学应从学生的实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习。
(4)本课题通过对内容的挖掘与整理,采用“问题情境──建立模型──解释、应用与拓展”的模式展开教学,让学生经历“从生活中发现数学──在教室里学习数学──到生活中运用数学”这样一个过程,从而更好地理解数学知识的意义,发展应用数学知识的意识与能力,进一步增强学好数学的愿望和信心。
学生通过本节从具体情境发现并提出数学问题的学习活动,进一步体会数学与自然及人类社会的密切联系,了解数学的价值。
在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题。
体会在解决问题中与他人合作的重要性。
体会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
两点之间,线段最短设计思想(1)国家数学课程标准指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
(2)初一学生从基础知识,基本技能和思维水平以及学习方式等方面有一个逐步适应和提高的过程。
因此,在进行教学设计时,必须时时考虑到新初一学生的学习实际,既不能盲目拔高,也不能搞简单化的结论式教学。
在新课改的过程中,教学设计应立足于学生实际,从大处着眼,深入挖掘教材内容的素质教育功能。
(3)数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
数学教学应从学生的实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习。
(4)本课题通过对内容的挖掘与整理,采用“问题情境──建立模型──解释、应用与拓展”的模式展开教学,让学生经历“从生活中发现数学──在教室里学习数学──到生活中运用数学” 这样一个过程,从而更好地理解数学知识的意义,发展应用数学知识的意识与能力,进一步增强学好数学的愿望和信心。
学生通过本节从具体情境发现并提出数学问题的学习活动,进一步体会数学与自然及人类社会的密切联系,了解数学的价值。
在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题。
体会在解决问题中与他人合作的重要性。
体会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。
教学任务分析教学流程安排课前准备教学过程设计问题2、河道长度如图2,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?图2问题3、九曲桥(2)如图3,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座笔直的桥相比,这样做是否增加了游人在桥上行走的路程?说出其中的道理。
初中所有线段最短问题教案教学目标:1. 让学生理解线段的性质,掌握两点之间线段最短的原理。
2. 培养学生运用线段性质解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 掌握两点之间线段最短的原理。
2. 能够运用线段性质解决实际问题。
教学准备:1. 教学课件或黑板。
2. 尺子、直尺。
教学过程:一、导入(5分钟)1. 利用课件或黑板,展示一些线段,让学生观察并说出它们的特点。
2. 引导学生思考:为什么我们通常会选择直线或折线来连接两点?二、新课讲解(15分钟)1. 讲解线段的性质:两点之间线段最短。
2. 通过实际例子,让学生理解并证明这个性质。
3. 讲解如何运用线段性质解决实际问题,例如最短路径问题、距离问题等。
三、课堂练习(15分钟)1. 让学生独立完成一些练习题,巩固对线段性质的理解。
2. 引导学生思考如何将实际问题转化为线段问题,并解决。
四、小组讨论(10分钟)1. 让学生分组讨论,尝试解决一些更复杂的线段问题。
2. 每组选出一个代表,分享他们的解题过程和答案。
五、总结与反思(5分钟)1. 让学生总结这节课学到了什么,并分享他们的学习体会。
2. 教师对学生的表现进行点评,并对线段问题进行一些拓展讲解。
教学延伸:1. 让学生尝试解决更复杂的线段问题,如多边形的最短路径问题。
2. 引导学生思考线段问题在现实生活中的应用,如地图导航、物流配送等。
教学反思:本节课通过讲解线段的性质,让学生掌握了两点之间线段最短的原理,并能够运用到实际问题中。
课堂上,学生积极参与,小组讨论热烈,对线段问题的理解有了明显的提高。
但在解决更复杂的线段问题时,部分学生仍表现出一定的困难,需要在今后的教学中加强训练和指导。
总体来说,本节课达到了预期的教学目标,学生对线段问题的掌握情况较好。
人教版七年级数学上册:4.1.2 《点、线、面、体——两点之间线段最短》教学设计一. 教材分析《点、线、面、体——两点之间线段最短》是人教版七年级数学上册第四单元第一节的内容。
本节课主要让学生理解两点之间线段最短的性质,掌握线段的性质及其应用。
通过本节课的学习,为学生进一步学习几何图形和其他数学知识打下基础。
二. 学情分析学生在进入七年级之前,已经学习了平面几何的基本概念,对点、线、面有一定的认识。
但是,对于两点之间线段最短的性质及其证明可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生直观地理解线段的性质,并通过举例、操作等活动,帮助学生巩固知识点。
三. 教学目标1.知识与技能:让学生理解两点之间线段最短的性质,学会运用线段的性质解决实际问题。
2.过程与方法:通过观察、操作、证明等环节,培养学生的动手操作能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:两点之间线段最短的性质。
2.难点:如何证明两点之间线段最短。
五. 教学方法1.情境教学法:通过生活实例,引导学生直观地理解线段的性质。
2.动手操作法:让学生通过实际操作,体验线段的性质。
3.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。
4.讲解法:教师针对关键知识点进行讲解,引导学生深入理解。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、线段模型等。
2.学具:学生用书、练习册、铅笔、橡皮等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的实例,如两个人在地图上寻找两地之间的最短路线。
引导学生思考:如何确定这两点之间的最短路线?从而引出本节课的主题——两点之间线段最短。
2.呈现(10分钟)教师通过讲解和展示线段模型,让学生直观地理解两点之间线段最短的性质。
同时,引导学生尝试用语言描述这一性质。
3.操练(10分钟)学生分组进行讨论,每组选择一个实例,运用线段的性质找出两点之间的最短路线。
二、探究新知(一)揭示课题1、揭示课题,板书课题:两点之间,线段最短(二)完成任务任务1:怎样走最近?如图1,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?学生思考、讨论,发表看法理解数学内容任务2:河道长度如下图,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?独立思考、小组讨论、组间交流,发表看法,相互评价理解数学内容任务3:九曲桥如下图,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座笔直的桥相比,这样做是否增加了游人在桥上行走的路程?说出其中的道理。
独立思考、小组讨论、组间交流,发表看法,相互评价强化理解所学新知(三)举例拓展你还能举出一些类似的例子吗?举例考察学生对事物理解的程度(四)探索交流蚂蚁爬行路线最短问题如下图,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,怎样爬行路线最短?如果要爬行到顶点C呢?独立思考,小组实验、探究交流,小组互评引发对问题的深层思考利用手中的正方体学具具体实验一下动手实验,自主探究,合作交流。
学生经历观察、实验、猜想,发展合情推理能力三、小结小结设想自己是一名园林设计师或者是一名管理者,在进行公共绿地设计时对情境一的一些思考与探讨能给你一些什么启发?合作学习,组内交流进一步认识数学与人类生活的密切联系四、课外拓展课外拓展如果蚂蚁在长方体的一个顶点上,如果蚂蚁在圆柱上,这时问题发生怎样的变化?问题如何解?课外自主学习,自主完成培养学生课外自主学习的能力板书设计两点之间,线段最短怎样走最近?连接AB河道长度变短九曲桥是学生学习活动评价设计学生自我评价表教学反思。
(二)完成任务
任务1:怎样走最近?
如图1,从A地到B地有四
条道路,除它们外能否再修一条
从A地到B地的最短道路?
学生思考、讨
论,发表看法理解数学内容
任务2:
如下图,把河道由弯曲改直,
根据________________________
说明这样做能缩短航道.
独立思考、发
表看法,相互评价
理解数学内容
任务3:如图:AB+AC_____BC,
理由是:____________________.
启发提问:三角形的任意两边的
与第三边什么关系?
独立思考:可
以看作是连接哪两
点的线?
思考归纳,并
积累:三角形的任
意两边的和大于第
三边
强化理解所学新
知
(三)举例拓展
你还能举出一些类似的例子
吗?
举例
考察学生对事物
理解的程度
(四)知识运用
在一条笔直的公路l两侧,分
别有A,B两个村庄,如图,现
在要在公路上建一个汽车站C,
使汽车站到两村的距离和最小,
请在图中画出汽车站C的位置,
并说明理由.
独立思考,动
手操作,相互交流
会运用所学知识B
A。